大步小步算法(BSGS)详解

本文深入讲解了BSGS算法,一种高效解决高次同余方程Ax≡B(mod P)的方法,其中A、B、P为已知数,P为质数。通过分析哈希表的应用和算法复杂度,介绍了如何在[0,P-1)范围内寻找最小解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BSGS(Baby Step Gaint Step)算法详解

BSGS算法是用于求解形如Ax≡B(mod  P)A^x\equiv B(\mod P)AxB(modP)的高次同余方程,其中A,B,PA,B,PA,B,P为已知,且要求gcd⁡(A,P)=1\gcd(A,P)=1gcd(A,P)=1是一个质数。

前置知识

  • 哈希

算法分析

先证明一个结论:若原方程有解,则x∈[0,P−1)x\in[0,P-1)x[0,P1)一定有解。

因为gcd⁡(A,P)=1\gcd(A,P)=1gcd(A,P)=1,由费马小定理得AP−1≡1(mod  P)A^{P-1}\equiv1(\mod P)AP11(modP)

则有Ax+k(P−1)≡Ax(mod  P)A^{x+k(P-1)}\equiv A^x(\mod P)Ax+k(P1)Ax(modP),其中kkk为整数。

换句话说就是出现了循环。这样一来,这个方程的最小解就一定在[0,P−1)[0,P-1)[0,P1)中了。

我们设x=am−bx = am - bx=amb,其中mmm为任意一个正数,且有a∈[0,m)a\in[0,m)a[0,m)

那么变一下形就发现Aam≡B⋅Ab(mod  P)A^{am}\equiv B\cdot A^{b}(\mod P)AamBAb(modP)

我们暴力算出右边的B⋅Abmod  PB\cdot A^b\mod PBAbmodP的所有可能的值,并存起来。

然后再枚举左边的aaa,并查询在右边有没有相等的值。

所以这个算法的复杂度为O(max⁡(m,Pm))O(\max(m,\frac{P}{m}))O(max(m,mP))。可以证明当m=Pm=\sqrt Pm=P时,算法的复杂度达到下界,为O(P)O(\sqrt P)O(P)

就这么简单QAQ…

当然为了查询方便,我们写一个哈希或者直接用map存下右边所有的值即可。

这里建议用哈希,因为用map的话会多出一个log⁡\loglog

模版

struct HashTable {
	struct HashNode {
		int u, v;
		HashNode *nxt;
	};
	HashNode pool[HashMod * 20 + 5];
	HashNode *hcnt, *head[HashMod + 5];
	void clear() {
		hcnt = &pool[0], memset(head, 0, sizeof head);
	}
	void addnode(int u, int v, int w) {
		HashNode *p = ++hcnt;
		p->u = w, p->v = v;
		p->nxt = head[u], head[u] = p;
	}
	void hash(int x, int k) {
		int s = x % HashMod;
		addnode(s, k, x);
	}
	int query(int x) {
		int s = x % HashMod;
		for(HashNode *p = head[s]; p != NULL; p = p->nxt)
			if(p->u == x) return p->v;
		return -1;
	}
};
HashTable hashtab;
ll BabyStepGaintStep(ll y, ll z, ll p) {
	if(y % p == 0) return -1;
	y %= p, z %= p;
	if(z == 1) return 0;
	hashtab.clear();
	ll m = (ll) sqrt(p) + 0.5;
	for(ll i = 0, t = z; i < m; i++, t = t * y % p)
		hashtab.hash(t, i);
	for(ll i = 1, tmp = QuickPow(y, m, p), t = tmp; i <= m + 1; i++, t = t * tmp % p) {
		ll k = hashtab.query(t);
		if(k == -1) continue;
		return i * m - k;
	}
	return -1;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值