数据治理平台建设中的技术栈使用选择与运用

数据治理平台的建设是一个比数据质检更大、更全面的范畴。数据质检通常是数据治理的一个重要子模块。建设一个完整的数据治理平台,其技术栈更为复杂和集成化。

以下是数据治理平台建设的技术栈全景图,它清晰地展示了从数据源到最终应用的全套技术组件及其相互关系:

在这里插入图片描述

各层技术栈详解

1. 元数据管理 (Metadata Management)

核心中的核心,是数据治理的基石,用于采集、存储、分析和展示元数据。

  • 开源解决方案:
    • Apache Atlas: Hadoop生态的“官方”选择,与Hive、HBase等集成深度好,提供类型系统、血缘和策略管理。
    • DataHub (LinkedIn): 现代架构,采用流式元数据架构,REST API优先,前端体验好,社区活跃,是目前的热门选择。
    • Amundsen (Lyft): 更侧重于“数据目录”功能,强大的搜索和发现能力,尤其适合分析师和数据科学家找数。
  • 商业/云解决方案:
    • Collibra, Alation: 行业领导者,功能全面但昂贵。
    • AWS Glue Data Catalog, Azure Purview, Google Data Catalog: 云厂商提供的托管服务,与自家生态无缝集成。
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值