【pytorch】pytorch使用清华源快速安装

本文转载自 CSDN 博客的一篇文章,详细介绍了...(由于原文内容未给出,此处摘要为示例,应包含文章关键信息)。
### PyTorch GPU 安装教程使用清华大学镜像源 #### 更改 pip 源为清华大学镜像源 为了加速下载并解决国内网络环境下的安装问题,建议先更改 `pip` 的默认源至清华大学镜像源。执行如下命令可实现这一配置: ```bash pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` 此操作使得之后所有的 `pip install` 命令都将利用清华大学提供的更快捷稳定的镜像服务来获取所需软件包[^1]。 #### 查找适合的 PyTorch 版本 对于带有 GPU 加速支持的 PyTorch 安装,推荐访问 [PyTorch官方网站](https://pytorch.org/get-started/locally/) 来确认最新的版本以及对应的 CUDA 和 cuDNN 版本需求。页面上提供了详细的指导信息帮助用户选择最合适的组合方式以匹配个人计算机上的硬件条件。 #### 使用 conda 进行安装 考虑到兼容性和依赖关系管理的问题,在 Anaconda 或 Miniconda 环境下通过 `conda` 安装可能是更好的选择。下面是一个基于 Conda 并采用清华 TUNA 镜像源的例子: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes conda create -n pytorch python=3.8 conda activate pytorch conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia ``` 上述指令创建了一个名为 `pytorch` 的新虚拟环境,并指定了 Python 版本为 3.8;接着激活这个新的环境并通过指定 NVIDIA CUDA 工具链版本 (这里假设为 11.3),从 PyTorch 和 Nvidia 渠道安装了包含 GPU 支持功能在内的完整版 PyTorch 及其相关库文件[^2]。 #### 测试安装成功与否 完成以上步骤后可以通过运行简单的测试脚本来验证是否正确设置了 GPU 加速的支持: ```python import torch print(torch.cuda.is_available()) print(torch.__version__) if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' tensor_example = torch.tensor([1., 2., 3.], device=device) print(f"Device being used is {device}") ``` 如果一切正常,则应该看到输出显示当前设备已切换到 `'cuda'` 模式并且能够打印出正确的 PyTorch 版本号。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值