到达时间差测量目标位置(TDOA)定位

该博客详细介绍了到达时间差测量目标位置(TDOA)定位的基本原理,包括利用TOOA定位需要的观测站数量和定位方程的矩阵形式。通过线性方程组的解法和误差分析,探讨了定位精度受站址误差和时间差测量误差的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

到达时间差测量目标位置(TDOA)


基本原理

由数学原理可知,距离两个定点的距离差为常数的动点的轨迹为双曲线。而若要在三维空间里确定一个点,至少需要三个距离差,四个观测点。因此,利用TOOA定位,至少要有四个观测站。

现有坐标为(x,y,z)(x,y,z)(x,y,z)的目标TTT,有M+1M+1M+1个观测站,其中有一个主站S0S_0S0,MMM个副站SiS_iSi,他们的坐标为(xi,yi,zi),i=0,1,⋅⋅⋅,M(x_i,y_i,z_i),i=0,1,···,M(xi,yi,zi),i=0,1,,M。设电磁辐射由目标到达各站的时间为ti(i=0,1,2,⋅⋅⋅,M)t_i(i=0,1,2,···,M)ti(i=0,1,2,M)。各副站到达时间与主站到达时间的时间差可写为τi(i=1,2,⋅⋅⋅,M)\tau_i(i=1,2,···,M)τi(i=1,2,,M)

将到达时间差乘光速,可得TTT到各副站到总站的距离差
Δri=cτi\Delta r_i=c\tau_iΔri=cτi
这个距离差还可由目标到主站的距离减去目标到副站的距离直接得到,即
Δri=ri−r0=[(x−xi)2+(y−yi)2+(z−zi)2]12−[(x−x0)2+(y−y0)2+(z−z0)2]12\Delta r_i = r_i - r_0=[(x-x_i)^2+(y-y_i)^2+(z-z_i)^2]^{\frac{1}{2}}-[(x-x_0)^2+(y-y_0)^2+(z-z_0)^2]^{\frac{1}{2}}Δri=rir0=[(xxi)2+(yyi)2+(zzi)2]21[(xx0)2+(yy0)2+(zz0)2]21
可得
(Δri+r0)2=ri2=(x−xi)2+(y−yi)2+(z−zi)2(\Delta r_i+r_0)^2=r_i^2=(x-x_i)^2+(y-y_i)^2+(z-z_i)^2(Δri+r0)2=ri2=(xxi)2+(yyi)2+(zzi)2
两边同减去r02r_0^2r02
Δri2+2Δrir0=(x−xi)2+(y−yi)2+(z−zi)2−(x−x0)2+(y−y0)2+(z−z0)2=2x(x0−xi)+2y(y0−yi)+2z(z0−zi)+(xi2+yi2+zi2)−(x02+y02+z02)\begin{aligned} \Delta r_i^2+2\Delta r_i r_0&=(x-x_i)^2+(y-y_i)^2+(z-z_i)^2-(x-x_0)^2+(y-y_0)^2+(z-z_0)^2\\ &=2x(x_0-x_i)+2y(y_0-y_i)+2z(z_0-z_i)+(x_i^2+y_i^2+z_i^2)-(x_0^2+y_0^2+z_0^2) \end{aligned} Δri2+2Δrir0=(xxi)2+(yyi)2+(zzi)2(xx0)2+(yy0)2+(zz0)2=2x(x0xi)+2y(y0yi)+2z(z0zi)+(xi2+yi2+zi2)(x02+y02+z02)
di2=xi2+yi2+zi2d_i^2=x_i^2+y_i^2+z_i^2di2=xi2+yi2+zi2,则
Δri2+2Δrir0=2x(x0−xi)+2y(y0−yi)+2z(z0−zi)+di2−d02\Delta r_i^2+2\Delta r_i r_0=2x(x_0-x_i)+2y(y_0-y_i)+2z(z_0-z_i)+d_i^2-d_0^2Δri2+2Δrir0=2x(x0xi)+2y(y0yi)+2z(z0zi)+di2d02
整理可得
x(x0−xi)+y(y0−yi)+z(z0−zi)=Δrir0+Δri2+do2−di22x(x_0-x_i)+y(y_0-y_i)+z(z_0-z_i)=\Delta r_ir_0+\frac{\Delta r_i^2+d_o^2-d_i^2}{2}x(x0xi)+y(y0yi)+z(z0zi)=Δrir0+2Δri2+do2di2
上述方程应有i=1,2,⋅⋅⋅,M个i=1,2,···,M个i=1,2,,Mx,y,zx,y,zx,y,z是未知数,将它改写为矩阵形式,如下:
[x1−x0y1−y0z1−z0x2−x0y2−y0z2−z0⋮⋮⋮xM−x0yM−y0zM−z0][xyz]=[−Δr1−Δr2⋮−ΔrM]r0+[l1l2⋮lM]其中,li=di2−d02−Δri22 \begin{bmatrix} x_1-x_0 & y_1-y_0 & z_1-z_0\\ x_2-x_0 & y_2-y_0 & z_2-z_0\\ \vdots & \vdots & \vdots \\ x_M-x_0 & y_M-y_0 &z_M-z_0 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix}= \begin{bmatrix} -\Delta r_1\\ -\Delta r_2\\ \vdots\\ -\Delta r_M \end{bmatrix}r_0+ \begin{bmatrix} l_1\\ l_2\\ \vdots\\ l_M \end{bmatrix}其中,l_i=\frac{d_i^2-d_0^2-\Delta r_i^2}{2} x1x0x2x0xMx0y1y0y2y0yMy0z1z0z2z0zMz0xyz=

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值