AOA(Angle of Arrival,到达角)定位算法及其误差分析的原理和MATLAB仿真

本文介绍了AOA(Angle of Arrival)定位算法的测向原理和误差分析,通过数学推导解释了如何从两个基站的角度信息反推出目标位置。并利用MATLAB进行了仿真,探讨了定位几何精度GDOP的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二站测向定位算法

1.测向原理

AOA图示
如图所示,有基站S1(x1,y1,z1),S2(x2,y2,z2)S_1(x_1,y_1,z_1),S_2(x_2,y_2,z_2)S1(x1,y1,z1),S2(x2,y2,z2),目标T(x,y,z)T(x,y,z)T(x,y,z)。图中关键角度可由基站坐标和目标坐标表示如下:
{ tan⁡β1=y−y1x−x1相对于站S1的方位角tan⁡β2=y−y2x−x2相对于站S2的方位角tan⁡ξ1=z−z1(x−x1)2+(y−y1)2相对于站S1的俯仰角tan⁡ξ2=z−z2(x−x2)2+(y−y2)2相对于站S2的俯仰角\begin{cases} \tan\beta_1= \frac{y-y_1}{x-x_1} \quad相对于站S_1的方位角\\ \tan\beta_2= \frac{y-y_2}{x-x_2} \quad相对于站S_2的方位角\\ \tan\xi_1=\frac{z-z1}{\sqrt{(x-x_1)^2+(y-y_1)^2}} \quad相对于站S_1的俯仰角\\ \tan\xi_2=\frac{z-z2}{\sqrt{(x-x_2)^2+(y-y_2)^2}} \quad相对于站S_2的俯仰角 \end{cases} tanβ1=xx1yy1S1tanβ2=xx2yy2S2tanξ1=(xx1)2+(yy1)2 zz1S1tanξ2=(xx2)2+(yy2)2 zz2S2
由这四个角中的三个,结合基站坐标即可反推出目标位置,推导如下:
step1:两基站间的距离L=(x1−x2)2+(y1−y2)2+(z1−z2)2step1:两基站间的距离L=\sqrt{(x1-x2)^2+(y_1-y_2)^2+(z_1-z_2)^2}step1:L=(x1x2)2+(y1y2)2+(z1z2)2
step2:在△S1T′S2中,由正弦定理得:sin⁡(β2−β1)L=sin⁡(π−β2)R=sin⁡(β2)R  ⟹  R=Lsin⁡β2sin⁡(β2−β1)step2:在\triangle S1 T'S2中,由正弦定理得:\frac{\sin(\beta2-\beta1)}{L}=\frac{\sin(\pi-\beta2)}{R}=\frac{\sin(\beta2)}{R}\implies R=\frac{L\sin \beta2}{\sin(\beta2-\beta1)}step2:S1TS2:Lsin(β2β1)=Rsin(πβ2)=Rsin(β2)R=sin(β2β1)Lsinβ2
step3:在△TT′S1中,得T距S1的距离R′=Rcos⁡ξ1step3:在\triangle TT'S_1中,得T距S_1的距离R'=\frac{R}{\cos \xi_1}step3:TTS1TS1R=cosξ1R
stpe4:可得:x=R′cos⁡ξ1cos⁡β1+x1;y=R′cos⁡ξ1sin⁡β1+y1;z=R′sin⁡ξ1+z1stpe4:可得:x=R'\cos\xi_1\cos\beta_1+x_1;y=R'\cos\xi_1\sin\beta_1+y_1;z=R'\sin\xi_1+z_1stpe4::x=Rcosξ1cosβ1+x1;y=Rcosξ1sinβ1+y1;z=Rsinξ1+z1

2.误差推导

条件:
S1(x1,y1,z1)S2(x2,y2,z2)T(x,y,z)S_1(x_1,y_1,z_1) \qquad S_2(x_2,y_2,z_2) \qquad T(x,y,z)S1(x1,y1,z

评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值