洛谷----P1579 哥德巴赫猜想(升级版)

埃氏筛法与质数求解
本文详细介绍了如何使用埃拉托斯特尼筛法高效地找出特定范围内的所有质数,并通过优化算法,将查找三个质数之和的时间从565ms降低到34ms。

这题其实如果会用埃拉托斯特尼筛法,其实非常简单。关于埃氏筛法,看我的这篇博客:洛谷p1217—回文质数
埃氏筛法的核心思想其实就是一个质数的任意倍必然不是质数。那么我们先建立一个表格,把0-20000之间的数全部判断好,之后直接调用这个bool型的表就可以啦。代码很简单:

#include <iostream>
#include <cstring>
#define MAX 20001
using namespace std;
bool prime_list[MAX];  //素数表
void prime_list_startup()  //埃拉托斯特尼筛法
{
	memset(prime_list, 1, sizeof(prime_list));  //将表中每一个值设为真,即假设每个数字都是素数
	prime_list[0] = prime_list[1] = false;  //0 1不是素数
	for (int i = 2; i <=MAX; i++)  //从2开始
	{
		if (!prime_list[i])  //如果i是素数
		{
			continue;  //进行下一次循环
		}
		for (int j=i*2; j<MAX; j+=i)
		{
			prime_list[j] = false;  //把i的整数倍全部抠掉
		}
	}

}



int main()
{
	prime_list_startup();
	int n;
	cin >> n;
	for (int i = 2; i < MAX; i++)
	{
		if (!prime_list[i])  //若不是素数
			continue;  //进入下一次循环
		for (int j = i; j < MAX; j++)  //第二个数必然是大于或等于第一个数!
		{
			if (!prime_list[j])  //若不是素数
				continue;  //进入下一次循环
			for (int k = j; k < MAX; k++)    //第三个数必然是大于或等于第二个数!
			{
				if (!prime_list[k]) //同上
					continue;
				if (i+j+k==n)  //判断三者之和是否为n,正确就输出
				{
					cout << i << " " << j << " " << k;
					return 0;
				}

			}
		}
	}

	return 0;
}

一次过~~全部ac。
其实还有更好的方法,让我们想想,这种方法的总时间为565ms。其实还可以进行优化,哥德巴赫猜想是一个为素数的奇数可以由三个素数相加得到,那么只有两种可能性,第一种可能性:
偶数+偶数+奇数=奇数
第二种可能性:
奇数+奇数+奇数=奇数

第一种情况,只有数字2既是偶数又是奇数,那么第三个数必定是n-4!我们只需要判断n-4是否是奇数就行。
第二种情况,假设a+b+c=n,那么只要a从3开始算,每次加2,同时只需要判断n-a-b是否是奇数即可。

下面是实现的代码:

#include <iostream>
#include <cstring>
#define MAX 20003
using namespace std;
bool prime_list[MAX];  //素数表
void prime_list_startup()  //埃拉托斯特尼筛法
{
	memset(prime_list, 1, sizeof(prime_list));
	prime_list[0] = prime_list[1] = false;
	for (int i = 2; i <=MAX; i++)
	{
		if (!prime_list[i])
		{
			continue;
		}
		for (int j=i*2; j<MAX; j+=i)
		{
			prime_list[j] = false;
		}
	}

}



int main()
{
	prime_list_startup();
	int n;
	cin >> n;

	if (prime_list[n-4])
	{
		cout << "2" <<" "<< "2"<<" "<< n-4;
	}
	else
	{
		for (int i = 3; i < MAX; i+=2)
		{
			if (!prime_list[i])  //若不是素数
				continue;  //进入下一次循环
			for (int j = i; j < MAX; j+=2)
			{
				if (!prime_list[j])  //若不是素数
					continue;  //进入下一次循环
				if (!prime_list[n - i - j]) 
					continue;
					cout << i << " " << j << " " << n-i-j;
					return 0;
			}	
		}
	}
	return 0;
}

直接全部ac。
提交后可以看出,这次运行时间是34ms,只有之前算法运行时间的十分之一不到。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值