这题其实如果会用埃拉托斯特尼筛法,其实非常简单。关于埃氏筛法,看我的这篇博客:洛谷p1217—回文质数
埃氏筛法的核心思想其实就是一个质数的任意倍必然不是质数。那么我们先建立一个表格,把0-20000之间的数全部判断好,之后直接调用这个bool型的表就可以啦。代码很简单:
#include <iostream>
#include <cstring>
#define MAX 20001
using namespace std;
bool prime_list[MAX]; //素数表
void prime_list_startup() //埃拉托斯特尼筛法
{
memset(prime_list, 1, sizeof(prime_list)); //将表中每一个值设为真,即假设每个数字都是素数
prime_list[0] = prime_list[1] = false; //0 1不是素数
for (int i = 2; i <=MAX; i++) //从2开始
{
if (!prime_list[i]) //如果i是素数
{
continue; //进行下一次循环
}
for (int j=i*2; j<MAX; j+=i)
{
prime_list[j] = false; //把i的整数倍全部抠掉
}
}
}
int main()
{
prime_list_startup();
int n;
cin >> n;
for (int i = 2; i < MAX; i++)
{
if (!prime_list[i]) //若不是素数
continue; //进入下一次循环
for (int j = i; j < MAX; j++) //第二个数必然是大于或等于第一个数!
{
if (!prime_list[j]) //若不是素数
continue; //进入下一次循环
for (int k = j; k < MAX; k++) //第三个数必然是大于或等于第二个数!
{
if (!prime_list[k]) //同上
continue;
if (i+j+k==n) //判断三者之和是否为n,正确就输出
{
cout << i << " " << j << " " << k;
return 0;
}
}
}
}
return 0;
}
一次过~~全部ac。
其实还有更好的方法,让我们想想,这种方法的总时间为565ms。其实还可以进行优化,哥德巴赫猜想是一个为素数的奇数可以由三个素数相加得到,那么只有两种可能性,第一种可能性:
偶数+偶数+奇数=奇数
第二种可能性:
奇数+奇数+奇数=奇数
第一种情况,只有数字2既是偶数又是奇数,那么第三个数必定是n-4!我们只需要判断n-4是否是奇数就行。
第二种情况,假设a+b+c=n,那么只要a从3开始算,每次加2,同时只需要判断n-a-b是否是奇数即可。
下面是实现的代码:
#include <iostream>
#include <cstring>
#define MAX 20003
using namespace std;
bool prime_list[MAX]; //素数表
void prime_list_startup() //埃拉托斯特尼筛法
{
memset(prime_list, 1, sizeof(prime_list));
prime_list[0] = prime_list[1] = false;
for (int i = 2; i <=MAX; i++)
{
if (!prime_list[i])
{
continue;
}
for (int j=i*2; j<MAX; j+=i)
{
prime_list[j] = false;
}
}
}
int main()
{
prime_list_startup();
int n;
cin >> n;
if (prime_list[n-4])
{
cout << "2" <<" "<< "2"<<" "<< n-4;
}
else
{
for (int i = 3; i < MAX; i+=2)
{
if (!prime_list[i]) //若不是素数
continue; //进入下一次循环
for (int j = i; j < MAX; j+=2)
{
if (!prime_list[j]) //若不是素数
continue; //进入下一次循环
if (!prime_list[n - i - j])
continue;
cout << i << " " << j << " " << n-i-j;
return 0;
}
}
}
return 0;
}
直接全部ac。
提交后可以看出,这次运行时间是34ms,只有之前算法运行时间的十分之一不到。