POJ 3468 A Simple Problem with Integers (树状和差分,分块,线段树延迟标记,详细的解答)

本文详细解析了POJ 3468题目的解题思路,通过树状数组和差分数组来处理区间和的查询与修改。介绍了如何利用差分将原问题转换为前缀和问题,并通过树状数组进行高效计算。此外,还讨论了分块和线段树延迟标记的方法,以便处理大规模数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目意思:
Q:求L到R的和。C:L,R的数都加x

树状数组版:

看了网上很多代码,综合以下的解题步骤:

本题用到的知识点:树状数组,差分
简单介绍差分:
假设原数组为 a[1] ~ a[n]
用数组b[1] ~ b[n] 作为 a数组的差分数组
b[1] = a[1]; //第一项特殊些
b[2] = a[2] - a[1];

b[n] = a[n] - a[n - 1];

那么b的前缀和(加入前k项),刚好为数组a的第k项的值,a[k]
sum{b[1], b[2], … , b[k]} = b[1] + b[2] + … + b[k] = a[k] //简单代入即可证明

如果在数组a区间 [L, R] 的范围内,每个位置加上值x, 对于差分数组b,发生变化的只有两项,
b[L] += x, b[R + 1] -= x // b[k] = a[k] - a[k - 1]; 2 <= k <= n, 取遍每一个k,很容易得出结论

思路:
1、使用差分分解:
现在计算a数组的前k项 的和,
sum{a[1], a[2], …, a[k]} = a[1] + a[2] + … + a[k] //依次展开每个 a[i] (1 <= i <= k)
= (b[1]) + (b[1] + b[2]) + (b[1] + b[2] + b[3]) + … + (b[1] + b[2] + … + b[k]) //有k个小括号
= k * (b[1] + b[2] + … + b[k]) - 0 * b[1] - 1 * b[2] - 2 * b[3] - … - (k - 1) * b[k]
//每个括号加上一些数, 都变成 (b[1] + b[2] + … + b[k]), 然后减去那些数(一共加上了 0 项的 b[1], 1 项的 b[2], … , 依次类推)
= k * sum{b[1], b[2], … , b[k]} - sum{0 * b[1], 1 * b[2], 2 * b[3], … , (k - 1) * b[k]}
//把数组a的前k 项和 sum{a[1], a[2], …, a[k]} 分解为两部分了
// 第一部分 : 差分数组b的前k项之和 sum{b[1], b[2], … , b[k]} 的 k倍
// 第二部分 : 序列 (i - 1) * b[i] 的前k项的和 sum{0 * b[1], 1 * b[2], 2 * b[3], … , (k - 1) * b[k]}

2、 使用树状数组分析:
第一部分的和 sum{b[1], b[2], … , b[k]} ( 简化记为:sum(c[1], k) ),用 树状数组 c[1] 来记录;
第二部分的和sum{0 * b[1], 1 * b[2], 2 * b[3], … , (k - 1) * b[k]}(简化记为:sum(c[0], k)), 用 树状数组 c[0] 来记录

sum{a[1], a[2], ..., a[k]} = k * sum(c[1], k) - sum(c[0], k)

那么原始数组a, [L, R]区间上同时加上x就可以表示为:(差分数组的结论)
对于c[1]来说,在L位置上加上x,在R + 1位置上加上−x; 
对于c[0]来说,在L位置上加上−x * (L − 1),在R+1位置上加上x * R; 	
//用 i = L 和 i = R + 1 代入式子 (i - 1) * b[i]得到,因为是负号,取相反数

3、 查询结果时候,求 前k项的和公式为
long long sumk = k * getSum(k, 1) + getSum(k, 0);

4、 最后,使用long long

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define lowbit(i) ((i)&(-i))	// lowbit(x) 表示x的二进制对应的值
const int MaxN = 100010;
long long c[2][MaxN];			//树状数组c[1] 和 c[0]
int n, q;
int A[MaxN];

//getSum()函数, 返回前x个数的和
long long getSum(int x, int index)
{
	long long sum = 0;
	for(int i = x; i > 0; i-= lowbit(i))
	{
		sum += c[index][i];
	}
	return sum;
}

//update()函数,将第x个数加上v
void update(int x, int v, int index)
{
	for(int i = x; i < MaxN; i += lowbit(i))
	{
		c[index][i] += v;
	}
}

int main()
{
	char cmd[2] = {0};
	scanf("%d%d", &n, &q);
	memset(c, 0, sizeof(c));
	for(int i = 1; i <= n; ++i)
	{
		scanf("%d", &A[i]);	
		update(i, A[i], 0);	// 数组 c[0] 进行初始化
	}
	int s, e, x;
	for(int i = 0; i < q; ++i)
	{
		scanf("%s", cmd);	
		if(cmd[0] == 'Q')
		{
			scanf("%d%d", &s, &e);
			long long suml = (s - 1) * getSum(s - 1, 1) + getSum(s - 1, 0);
			long long sumr = e * getSum(e, 1) + getSum(e, 0);
			printf("%lld\n", sumr - suml);
		}else{
			scanf("%d%d%d", &s, &e, &x);	
			//对于c[0]来说,在L位置上加上−x * (L − 1),在R+1位置上加上x * R
			update(s, -x * (s - 1), 0);
			update(e + 1, x * e, 0);
			//对于c[1]来说,在L位置上加上x,在R + 1位置上加上−x
			update(s, x, 1);
			update(e + 1, -x, 1);
		}
	}
	return 0;
}

/*
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
*/

/*
4
55
9
15
*/

分块的做法:

1、长度为n的区间,分成若干个长度不超过 sqrt(n) 的段,sum[i] 表示第i段的区间的和,add[i]表示第i段的增量标记
第 i段的左端点 (i- 1) * sqrt(n) + 1, 右端点 min(n, i * sqrt(n))
2、对于 “C l r d”, 增加指令, 对于完整的段, 标记该区间 的增量 add[i] 增加了多少,
对于不完整的段,朴素的做法,每个值都加上 d, 同时改变 sum[i], 也就是 sum[i] += d * 区间的大小
3、对于 “Q l r”, 查询指令,同样分为完整段和不完整段处理

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int MaxN = 100010;
long long a[MaxN], sum[MaxN], add[MaxN];
int L[MaxN], R[MaxN];	//每段的左右端点
int pos[MaxN];			// 每个位置属于那一段
int n, m, t;

void change(int l, int r, long long d)
{
	int p = pos[l], q = pos[r];
	if(p == q)
	{
		for(int i = l; i <= r; ++i)
		{
			a[i] += d;
		}
		sum[p] += d * (r - l + 1);
	}else{
		for(int i = p + 1; i <= q - 1; ++i)
		{
			add[i] += d;	
		}
		for(int i = l; i <= R[p]; ++i)
		{
			a[i] += d;
		}
		sum[p] += d * (R[p] - l + 1);
		for(int i = L[q]; i <= r; ++i)
		{
			a[i] += d;
		}
		sum[q] += d * (r - L[q] + 1);
	}
}

long long ask(int l, int r)
{
	int p = pos[l], q = pos[r];
	long long ans = 0;
	if(p == q)
	{
		for(int i = l; i <= r; ++i)
		{
			ans += a[i];
		}
		ans += add[p] * (r - l + 1);
	}else{
		for(int i = p + 1; i <= q - 1; ++i)
		{
			ans += sum[i] + add[i] * (R[i] - L[i] + 1);
		}
		for(int i = l; i <= R[p]; ++i)
		{
			ans += a[i];
		}
		ans += add[p] * (R[p] - l + 1);
		for(int i = L[q]; i <= r; ++i)
		{
			ans += a[i];
		}
		ans += add[q] * (r - L[q] + 1);
	}
	return ans;
}

int main()
{
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= n; ++i)
	{
		scanf("%lld", &a[i]);
	}
	t = sqrt(n);
	for(int i = 1; i <= t; ++i)
	{
		L[i] = (i - 1) * sqrt(n) + 1;
		R[i] = i * sqrt(n);
	}
	if(R[t] < n)
	{
		++t, L[t] = R[t - 1] + 1, R[t] = n;
	}
	//预处理
	for(int i = 1; i <= t; ++i)
	{
		for(int j = L[i]; j <= R[i]; ++j)
		{
			pos[j] = i;
			sum[i] += a[j];
		}
	}
	//指令
	while(m--)
	{
		char op[3];
		int l, r, d;
		scanf("%s%d%d", op, &l, &r);
		if('C' == op[0])
		{
			scanf("%d", &d);
			change(l, r, d);
		}else{
			printf("%lld\n", ask(l, r));
		}
	}
	return 0;
}

线段树做法:延迟标记

1、 在区间修改的时候,如果某个节点的区间被 修改的区间完全覆盖(if(l <= tree[p].l && r >= tree[p].r) //完全覆盖), 以该节点为根的所有子树的存储信息都发生变化。如果后面的查询信息没有查询到这些相关的节点,说明目前这些节点的信息不需要更新。
也就是说,遇到完全覆盖的情况,直接返回,不过需要给这个节点打上延迟标记 add, 这个标记表示,该节点区间内的所有数加上 add 。
2、后续指令中,如果需要从节点p向下递归,再检查p是否有延迟标记。
因此建立线段树节点的时候,信息如下

struct segTree
{
	int l, r;
	long long sum, add;
}tree[MaxN * 4];
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int MaxN = 100010;
int a[MaxN];
int n, m;

struct segTree
{
	int l, r;
	long long sum, add;
}tree[MaxN * 4];

void build(int p, int l, int r)
{
	tree[p].l = l, tree[p].r = r;
	if(l == r)
	{
		tree[p].sum = a[l];
		return;
	}
	int mid = (l + r) / 2;
	build(p * 2, l, mid);
	build(p * 2 + 1, mid + 1, r);
	tree[p].sum = tree[p * 2].sum + tree[p * 2 + 1].sum;
}

void spread(int p)		//从节点p向下递归
{
	if(tree[p].add)	//节点p有更新标记
	{
		tree[p * 2].sum += tree[p].add * (tree[p * 2].r - tree[p * 2].l + 1);	//更新左孩子节点
		tree[p * 2 + 1].sum += tree[p].add * (tree[p * 2 + 1].r - tree[p * 2 + 1].l + 1);	//更新右孩子节点
		tree[p * 2].add += tree[p].add;		//给左孩子打上延迟标记
		tree[p * 2 + 1].add += tree[p].add;	//给右孩子打上延迟标记
		tree[p].add = 0;					//清除p的标记
	}
}

void change(int p, int l, int r, int d)
{
	if(l <= tree[p].l && r >= tree[p].r)	//完全覆盖
	{
		tree[p].sum += (long long)d * (tree[p].r - tree[p].l + 1);	//更新节点信息
		tree[p].add += d;	//给节点打上延迟标记
		return;
	}
	spread(p);
	int mid = (tree[p].l + tree[p].r) / 2;
	if(l <= mid)
	{
		change(p * 2, l, r, d);	
	}
	if(r > mid)
	{
		change(p * 2 + 1, l, r, d);
	}
	tree[p].sum = tree[2 * p].sum + tree[p * 2 + 1].sum;
}

long long ask(int p, int l, int r)
{
	if(l <= tree[p].l && r >= tree[p].r)
	{
		return tree[p].sum;
	}
	spread(p);
	int mid = (tree[p].l + tree[p].r) / 2;
	long long val = 0;
	if(l <= mid)
	{
		val += ask(p * 2, l, r);	
	}
	if(r > mid)
	{
		val += ask(p * 2 + 1, l, r);
	}
	return val;
}

int main()
{
	scanf("%d%d", &n, &m);
	for(int i = 1; i <= n; ++i)
	{
		scanf("%d", &a[i]);
	}
	build(1, 1, n);
	while(m--)
	{
		char op[3];
		int l, r, d;
		scanf("%s%d%d", op, &l, &r);
		if('C' == op[0])
		{
			scanf("%d", &d);
			change(1, l, r, d);
		}else{
			printf("%lld\n", ask(1, l, r));
		}
	}
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值