treap 树
本题要点:
1、建立两棵 treap 树, 一棵用来存 宠物,一棵树用来存 顾客。 题目给出的所有的顾客值和宠物值都不一样。
这样结构体 Treap 只需要 多一个 size 来就来子树的节点总数
2、套用 treap 树 的模板,写好 以下函数。 因为是两棵树,需要传参数的引用。
int New(int val, Treap* a, int& tot)
void update(int p, Treap* a)
void Build(Treap* a, int& tot, int& root)
void zig(int &p, Treap* a) //右旋转
void zag(int &p, Treap* a) //左旋
void Insert(int &p, int val, Treap* a, int& tot)
int GetPre(int val, Treap* a, int root)
int GetNext(int val, Treap* a, int root)
void Remove(int &p, int val, Treap* a)
3、如果新来了宠物 val ,那么判断顾客的 树是否为空,
如果顾客为空,把 val 插入到 宠物的 treap树;
否则,从顾客树中查找前驱 pre, 后继 nxt, 判断差值,看看选哪个。选了再删除。 还有,这里优先选择前驱。
如果新来的是 顾客 val, 同理操作。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cstdlib>
using namespace std;
const int MaxN = 8e4 + 10, INF = 0x3fffffff, mod = 1000000;
int n, tot1, tot2, root1, root2;
struct Treap
{
int l, r;
int val, dat;
int size; // 子树的节点总数
}client[MaxN], pet[MaxN];
int New(int val, Treap* a, int& tot)
{
a[++tot].val = val;
a[tot].dat = rand();
a[tot].size = 1;
return tot;
}
void update(int p, Treap* a)
{
a[p].size = a[a[p].l].size + a[a[p].r].size + 1;
}
void Build(Treap* a, int& tot, int& root)
{
New(-INF, a, tot), New(INF, a, tot);
root = 1, a[1].r = 2;
update(root, a);
}
void zig(int &p, Treap* a) //右旋转
{
int q = a[p].l;
a[p].l = a[q].r, a[q].r = p, p = q;
update(a[p].r, a), update(p, a);
}
void zag(int &p, Treap* a) //左旋
{
int q = a[p].r;
a[p].r = a[q].l, a[q].l = p, p = q;
update(a[p].l, a), update(p, a);
}
void Insert(int &p, int val, Treap* a, int& tot)
{
if(0 == p)
{
p = New(val, a, tot);
return;
}
if(val < a[p].val)
{
Insert(a[p].l, val, a, tot);
if(a[p].dat < a[a[p].l].dat) zig(p, a); //不满足堆的条件,右旋
}else{
Insert(a[p].r, val, a, tot);
if(a[p].dat < a[a[p].r].dat) zag(p, a);
}
update(p, a);
}
int GetPre(int val, Treap* a, int root)
{
int ans = 1; //a[1].val = -INF;
int p = root;
while(p)
{
if(val == a[p].val)
{
if(a[p].l > 0)
{
p = a[p].l;
while(a[p].r > 0)
p = a[p].r; //左子树一直往右走
ans = p;
}
break;
}
if(a[p].val < val && a[p].val > a[ans].val) ans = p;
p = val < a[p].val ? a[p].l : a[p].r;
}
return a[ans].val;
}
int GetNext(int val, Treap* a, int root)
{
int ans = 2;
int p = root;
while(p)
{
if(val == a[p].val)
{
if(a[p].r > 0)
{
p = a[p].r;
while(a[p].l > 0)
p = a[p].l; //右子树一直往左走
ans = p;
}
break;
}
if(a[p].val > val && a[p].val < a[ans].val)
ans = p;
p = val < a[p].val ? a[p].l : a[p].r;
}
return a[ans].val;
}
void Remove(int &p, int val, Treap* a)
{
if(0 == p) return;
if(val == a[p].val) //检查到val
{
if(a[p].l || a[p].r)
{
if(a[p].r == 0 || a[a[p].l].dat > a[a[p].r].dat)
{
zig(p, a);
Remove(a[p].r, val, a);
}else{
zag(p, a);
Remove(a[p].l, val, a);
}
update(p, a);
}else{
a[p].size = 0;
update(p, a);
p = 0; //叶子节点,直接删除
}
return;
}
val < a[p].val ? Remove(a[p].l, val, a) : Remove(a[p].r, val, a);
update(p, a);
}
int main()
{
Build(pet, tot1, root1);
Build(client, tot2, root2);
int x, y, ans = 0, pre, nxt;
scanf("%d", &n);
for(int i = 0; i < n; ++i)
{
scanf("%d%d", &x, &y);
if(0 == x) // 宠物
{
if(client[root2].size == 2)
{
Insert(root1, y, pet, tot1);
}else if(client[root2].size > 2){
pre = GetPre(y, client, root2);
nxt = GetNext(y, client, root2);
if(abs(y - nxt) < abs(y - pre))
{
ans = (ans + abs(y - nxt)) % mod;
Remove(root2, nxt, client);
}else{
ans = (ans + abs(y - pre)) % mod;
Remove(root2, pre, client);
}
}
}else{
if(pet[root1].size == 2)
{
Insert(root2, y, client, tot2);
}else if(pet[root1].size > 2){
pre = GetPre(y, pet, root1);
nxt = GetNext(y, pet, root1);
if(abs(y - nxt) < abs(y - pre))
{
ans = (ans + abs(y - nxt)) % mod;
Remove(root1, nxt, pet);
}else{
ans = (ans + abs(y - pre)) % mod;
Remove(root1, pre, pet);
}
}
}
}
printf("%d\n", ans);
return 0;
}
/*
5
0 2
0 4
1 3
1 2
1 5
*/
/*
3
*/