【YOLOv12改进trick】自注意力模块ScaledDotProductAttention(TSA)引入YOLOv12,实现涨点和效率提升,含创新点Python代码

🍋改进模块🍋:ScaledDotProductAttention自注意力模块
🍋解决问题🍋:ScaledDotProductAttention模块通过捕获长距离依赖性增强特征表示来提高医学图像分割的准确性和效率。
🍋改进优势🍋:在ScaledDotProductAttention中,用Transformer中的多头自注意力机制,能够捕获输入特征之间的长距离依赖关系,帮助模型理解图像中不同区域之间的全局上下文关系,从而提高分割的准确性。。
🍋适用场景🍋:医学影像分割、语义分割、目标检测、图像分类
🍋思路来源🍋:2022 《TransAttUnet: Multi-level Attention-guided U-Net with Transformer for Medical Image Segmentation》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zy_destiny

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值