🍋改进模块🍋:ScaledDotProductAttention自注意力模块
🍋解决问题🍋:ScaledDotProductAttention模块通过捕获长距离依赖性和增强特征表示来提高医学图像分割的准确性和效率。
🍋改进优势🍋:在ScaledDotProductAttention中,用Transformer中的多头自注意力机制,能够捕获输入特征之间的长距离依赖关系,帮助模型理解图像中不同区域之间的全局上下文关系,从而提高分割的准确性。。
🍋适用场景🍋:医学影像分割、语义分割、目标检测、图像分类
🍋思路来源🍋:2022 《TransAttUnet: Multi-level Attention-guided U-Net with Transformer for Medical Image Segmentation》
【YOLOv12改进trick】自注意力模块ScaledDotProductAttention(TSA)引入YOLOv12,实现涨点和效率提升,含创新点Python代码
于 2025-03-20 09:18:33 首次发布