- 博客(1532)
- 资源 (4006)
- 收藏
- 关注
原创 App Store推广策略详细指南:Apple Search Ads深度解析与优化技巧
广告主可以在搜索结果广告系列中设定CPA目标 4。Apple也会在其报告中提供平均CPA的指标数据 12。制定出价策略时,应重点关注目标CPA、CPG(Cost Per Goal,按目标成本)或ROAS 13。设定CPA目标有助于将广告支出与实际的业务成果(如应用安装或特定的安装后事件)联系起来。虽然CPT是支付模型,但CPA(或ROAS/LTV)应成为出价优化的首要驱动力 12。应根据关键词是否达到目标CPA来调整出价的高低。这将关注点从最小化点击成本转移到最大化获客效率。
2025-05-29 10:36:40
643
原创 什么是 Q-learning?简述其算法流程(面试题200合集,中频、重要)
答案:“Model-Free”(无模型)意味着算法在学习过程中不需要了解或估计环境的完整动态模型。具体来说,智能体不需要知道:状态转移概率Ps′∣saP(s'|s,a)Ps′∣sa:在状态sss执行动作aaa后,转移到状态s′s's′的概率。奖励函数Rsas′R(s,a,s')Rsas′:在状态sss执行动作aaa并转移到状态s′s's′后,获得的奖励。Q-learning 通过与环境直接交互,观察sars′sars。
2025-05-20 11:23:03
824
原创 什么是 Markov 决策过程(MDP)?(面试题200合集,中频、重要)
是一种用于在不确定环境中进行顺序决策的数学框架。它在强化学习、人工智能、运筹学和经济学等领域有着广泛的应用。MDP 提供了一种形式化的方式来描述一个智能体(agent)如何与环境(environment)互动,并通过学习来最大化累积奖励。
2025-05-20 11:19:51
789
原创 解释策略梯度(Policy Gradient)方法(面试题200合集,中频、重要)
策略梯度 (Policy Gradient, PG) 方法是强化学习中的一类算法,其核心思想是,该策略能够将状态映射到动作(或动作的概率分布)。与价值学习方法(如Q-learning)不同,策略梯度方法不依赖于学习价值函数来间接推导策略,而是直接优化策略本身以最大化期望的累积奖励。📈。
2025-05-20 11:07:02
777
原创 解释 DQN(Deep Q-Network)的原理(面试题200合集,中频、重要)
主网络根据这个固定的预期来调整自己的“出招策略”,而不是根据一个每一步都在剧烈变化的目标进行调整,从而使得学习过程更加平滑。如果目标Q值也随着主网络的每一次更新而立即改变,那么优化目标就会变得非常不稳定,类似于追逐一个快速移动的目标,使得学习过程难以收敛,甚至发散。它的出现是强化学习领域的一个重要里程碑,尤其在解决具有高维状态空间(例如,直接从像素学习玩视频游戏)的问题上取得了巨大成功。这意味着目标值和我们试图学习的Q值是相关的,这可能导致训练过程不稳定,甚至发散。,输出是该状态下所有可能动作的Q值。
2025-05-20 10:42:08
918
原创 什么是 F1 分数?它在分类任务中的意义是什么?(面试题200合集,高频、关键)
F-beta 分数是 F1 分数的一个推广形式,它允许我们根据业务需求对精确率和召回率赋予不同的权重。
2025-05-20 10:37:37
821
原创 讨论模型的泛化能力及其评估方法(面试题200合集,高频、关键)
模型的泛化能力 (Generalization Ability) 是指一个机器学习或深度学习模型在训练完成后,对于未曾见过的新鲜数据(即训练集之外的数据)的预测或表现能力。泛化能力是衡量模型好坏的核心指标之一,因为我们构建模型的最终目的是应用于实际场景中解决未知问题。选择合适的评估指标对于准确衡量模型的泛化能力至关重要,具体选择取决于任务类型(分类、回归等)和业务需求。评估模型的泛化能力,核心思想是使用模型在训练过程中未见过的数据来测试其表现。
2025-05-20 10:24:35
987
原创 描述你参与过的一个深度学习项目,遇到了哪些挑战的回答模板(面试题200合集,高频、关键)
在过去的项目经历中,我曾参与过一个基于深度学习的智能医疗影像辅助诊断系统的研发。由于ResNet具有更深的网络结构和残差连接,能够学习到更丰富的特征表示,并在一定程度上提升了模型的分割精度,尤其是在一些细微病灶的识别上。因其在医学图像分割领域的优异表现和高效的编码器-解码器结构(包含跳跃连接以融合多尺度特征)成为我们的首选。FCN也是一个经典的语义分割模型,但U-Net在跳跃连接的设计上对医学影像这类小目标和边缘细节的处理通常更具优势。在医疗领域,模型的可解释性至关重要,甚至可以说和模型的准确性同等重要。
2025-05-20 01:46:53
613
原创 如何在资源有限的情况下训练大型模型?(面试题200合集,高频、关键)
在资源有限的情况下训练大型模型,需要采用一系列策略来优化内存使用、降低计算开销和有效利用可用硬件。主要方法包括等。
2025-05-20 01:45:10
767
原创 解释模型压缩和剪枝(Pruning)技术(面试题200合集,高频、关键)
模型压缩是一系列旨在减小深度学习模型尺寸、降低其计算量和能耗的技术总称。其核心思想是去除模型中的冗余信息,提取出最关键的知识。**量化 (Quantization)😗*降低模型参数(权重和/或激活值)的数值精度,例如从32位浮点数 (FP32) 转换为8位整数 (INT8) 或更低精度。用一个已经训练好的、更大更复杂的“教师模型”来指导一个更小、更轻量的“学生模型”的训练。将权重矩阵分解为多个秩更低的矩阵的乘积,从而减少参数数量。让模型中的多个部分共享同一组参数。
2025-05-19 22:54:32
831
1
原创 什么是 ONNX?它在模型部署中的作用是什么?(面试题200合集,高频、关键)
ONNX (Open Neural Network Exchange) 是一个开放的、用于表示机器学习模型的标准格式。它由微软、Facebook(现Meta)和AWS等公司共同发起并维护,旨在解决不同深度学习框架之间的互操作性问题。你可以将ONNX看作是机器学习模型领域的“通用语言”或“中间件”。ONNX的核心组成:定义了一套标准的、可扩展的计算图结构、内置的运算符集合 (operatorset) 以及标准数据类型。
2025-05-19 22:35:14
420
原创 解释 TensorRT 和 TorchScript 等工具在推理优化中的应用(面试题200合集,高频、关键)
TorchScript 是 PyTorch 框架的一部分,它提供了一种将 PyTorch 模型从纯 Python 环境转换到一个可以被序列化、优化并在非 Python 环境(如 C++、移动端)中运行的表示形式。为了将训练好的复杂模型高效地部署到实际应用中,尤其是在对延迟和吞吐量有严格要求的场景下,推理优化工具扮演了核心角色。NVIDIA TensorRT 和 PyTorch的 TorchScript 是业界广泛应用的代表性工具,它们通过不同的机制来提升模型的推理性能。
2025-05-19 22:26:02
621
原创 讨论深度学习在边缘设备上的部署(面试题200合集,高频、关键)
将深度学习模型部署到边缘设备,是指在数据产生的源头附近(如智能手机、可穿戴设备、物联网(IoT)传感器、自动驾驶汽车、工业机器人等)直接运行模型进行推理,而不是将数据发送到云端服务器进行处理。这种模式正在成为人工智能应用的关键趋势,因为它能够带来诸多优势,同时也面临着独特的挑战。目的是减小模型大小、降低计算复杂度,同时尽可能保持模型精度。
2025-05-19 22:22:36
497
原创 解释联邦学习(Federated Learning)的概念和优势(面试题200合集,高频、关键)
联邦学习是一种分布式机器学习技术,它允许多个设备或组织在不直接共享其本地数据的情况下协同训练一个共享的机器学习模型。其核心思想是将模型训练任务下放到各个数据持有方(例如,用户的手机、医院的服务器等),在本地利用各自的数据进行模型训练,然后只将模型更新的参数(例如,梯度、权重等)汇总到中央服务器进行聚合,从而得到一个更全局、更鲁棒的模型。这个过程会迭代进行,直到模型收敛。
2025-05-19 22:18:35
723
原创 讨论深度学习在医疗、金融等行业的应用(面试题200合集,高频、关键)
深度学习作为人工智能领域的一个重要分支,近年来在医疗和金融等行业展现出巨大的应用潜力,并取得了显著的成果。其强大的特征学习和模式识别能力,使得机器能够处理和分析海量复杂数据,从而在多个关键环节赋能行业发展。深度学习在医疗领域的应用主要集中在医学影像分析、疾病诊断与预测、药物研发以及个性化治疗等方面。在金融行业,深度学习主要应用于风险管理、欺诈检测、算法交易、客户服务以及个性化推荐等方面。
2025-05-19 17:58:59
792
原创 解释模型的解释性和可解释性(Explainability)(面试题200合集,高频、关键)
模型的解释性(Explainability)和可解释性(Interpretability)正是致力于解决这一问题的关键领域,旨在让我们能够理解、信任和有效管理这些复杂的AI系统。总而言之,模型的解释性和可解释性是负责任AI的核心组成部分。随着AI在社会各个层面的渗透,理解、信任和控制这些系统变得越来越重要,而解释性正是实现这些目标的关键途径。如果是本身可解释的模型(如线性回归、决策树),可以直接利用其内在可解释性。需要解释性的核心原因是为了建立信任、调试模型、确保公平、满足法规、获取洞察等。
2025-05-19 16:25:21
521
原创 你熟悉哪些深度学习框架?比较 TensorFlow 和 PyTorch 的优缺点(面试题200合集,高频、关键)
在当今人工智能飞速发展的时代,深度学习框架扮演着至关重要的角色。它们为研究人员和开发人员提供了构建、训练和部署复杂神经网络模型的工具和接口。在众多框架中,TensorFlow 和 PyTorch 无疑是最受欢迎和最具影响力的两个。理解它们的核心概念、设计哲学以及各自的优缺点,对于任何有志于从事深度学习领域工作的人来说都至关重要。
2025-05-19 16:22:41
955
原创 讨论深度学习在艺术创作中的应用(面试题200合集,中频、实用)
说明没有绝对的“最好”,不同模型各有侧重,适用于不同的需求和用户群体。例如,追求高度定制和控制的专业用户可能更倾向于 Stable Diffusion;希望快速获得高质量艺术感图像的用户可能会选择 Midjourney;而需要强大语义理解和自然交互的用户可能会喜欢 DALL-E 3。
2025-05-19 16:12:51
786
原创 解释神经网络的普适逼近定理(面试题200合集,中频、实用)
一个具有足够多神经元的单隐层前馈神经网络,可以使用某种“良好”的激活函数,以任意精度逼近定义在输入空间有界闭集(紧致集)上的任何连续函数。换句话说,无论一个连续函数多么复杂,只要它定义在一个封闭且有界的区域内(例如,输入的所有特征值都在一个特定的范围内,比如0到1之间),我们总能找到一个(可能非常宽的)单隐层神经网络,其输出可以无限接近这个目标函数。为什么这个定理如此重要?理论支撑。
2025-05-19 16:08:02
787
原创 讨论深度学习的理论基础,如信息瓶颈理论(面试题200合集,中频、实用)
给定一个输入随机变量XXX和一个我们希望预测的目标随机变量YYY(它们之间存在某种依赖关系),我们希望找到一个“瓶颈”表示ZZZ,它在尽可能“忘记”或压缩XXX的同时,尽可能多地“记住”或保留关于YYY的信息。想象一下,你正在阅读一本非常厚的历史书(输入XXX),你的朋友只对书中关于某个特定历史事件的描述感兴趣(目标YYY你需要给你的朋友写一个摘要(瓶颈表示ZZZ简洁:尽可能短,丢弃书中与该特定事件无关的大量细节(压缩XXX信息丰富。
2025-05-19 16:03:41
536
原创 什么是梯度?在神经网络中如何计算梯度?(面试题200合集,中频、重要)
在机器学习,尤其是深度学习领域,“梯度”(Gradient)是一个核心概念,它指导着模型如何通过学习数据来最小化预测错误。理解梯度及其在神经网络中的计算方式,对于掌握神经网络的训练过程至关重要。在数学中,梯度是一个向量,表示一个多元函数在某一点上的最大方向导数。简单来说,它指向函数值增长最快的方向。如果一个函数有多个自变量,例如 f(x1,x2,…,xn)f(x_1, x_2, \dots, x_n)f(x1,x2,…,xn),那么它在某一点 P(a1,a2,…,an)P(a_1, a_2, \dot
2025-05-19 11:18:34
785
原创 解释在线学习(Online Learning)与批量学习(Batch Learning)的区别
在线学习 (Online Learning) 和批量学习 (Batch Learning),也称为离线学习 (Offline Learning),是机器学习中两种截然不同的模型训练范式。它们在数据处理方式、模型更新频率、计算资源需求以及对动态环境的适应性等方面存在显著差异。理解这两种学习方式的特点、优缺点和适用场景对于选择合适的机器学习策略至关重要。
2025-05-19 10:47:43
1014
原创 详细讨论深度学习在时间序列预测中的应用(面试题200合集,中频、实用)
深度学习在时间序列预测领域取得了显著的进展,为处理具有复杂模式、非线性关系和多变量影响的时间序列数据提供了强大的工具。与传统的时间序列模型(如 ARIMA、指数平滑)相比,深度学习模型能够自动从原始数据中学习复杂的特征和长期依赖关系,并在许多预测任务中展现出更优越的性能。
2025-05-16 17:19:49
808
原创 解释深度学习在语音识别和合成中的应用(面试题200合集,中频、实用)
深度学习彻底改变了语音识别 (Automatic Speech Recognition, ASR) 和语音合成 (Text-to-Speech, TTS) 领域,将这些技术从实验室推向了广泛的商业应用,并显著提升了其性能和自然度。
2025-05-16 17:07:02
503
原创 讨论深度学习在自动驾驶中的应用(面试题200合集,中频、实用)
深度学习在自动驾驶中的应用是一个复杂且快速发展的领域,它已经成为实现更高水平自动化的核心驱动力。深度学习模型凭借其从海量数据中学习复杂模式的能力,在自动驾驶的各个关键环节都展现出巨大潜力,并已在实际应用中取得显著成果。
2025-05-16 16:51:51
714
原创 解释深度学习在游戏 AI 中的应用(面试题200合集,中频、实用)
总而言之,深度学习为游戏AI带来了前所未有的可能性,能够创造出更智能、更具适应性、更个性化的游戏体验。目前,许多游戏公司仍在探索和实验阶段,但成功的应用案例和研究成果正不断涌现,预示着深度学习将在未来的游戏开发中扮演越来越重要的角色。深度学习(Deep Learning, DL)作为机器学习的一个分支,通过构建深层神经网络(Deep Neural Networks, DNNs),能够从大量数据中自动学习复杂的模式和特征,为克服传统游戏AI的局限性提供了新的途径。
2025-05-16 16:42:35
469
原创 解释 PyTorch 中的动态图和 TensorFlow 中的静态图(面试题200合集,高频、关键)
特性静态图 (TensorFlow 1.x 风格)动态图 (PyTorch, TF 2.x Eager)TF 2.x +核心思想Define-then-Run (先定义,后运行)Define-by-Run (边定义,边运行)动态开发,可选静态化图构建执行前完整构建,固化运行时逐操作动态构建,更灵活首次调用/追踪时构建静态图执行通过执行已定义的图操作立即执行,返回具体值执行优化后的静态图 (通常)调试较困难,错误在sess.run()时出现,需专门工具。
2025-05-16 16:30:14
932
原创 如何在 PyTorch 中定义一个自定义层?(面试题200合集,高频、关键)
是 PyTorch 中所有神经网络模块(包括层和整个模型)的基类。参数跟踪:自动追踪模块中所有通过定义的参数。这些参数可以通过方法访问。子模块注册:可以将其他nn.Module实例作为当前模块的属性,它们会被自动注册,其参数也会被当前模块追踪。状态管理:如通过.train()和.eval()方法切换训练和评估模式,这对于像 Dropout 和 BatchNorm这样的层非常重要。设备转移:通过方法可以方便地将模块的所有参数和缓冲区移动到指定的设备(CPU 或 GPU)。
2025-05-16 15:13:38
967
原创 解释 TensorFlow 中的 Keras API(面试题200合集,中频、关键)
TensorFlow 中的 Keras API 提供了一个强大而用户友好的框架,用于构建、训练和部署深度学习模型。它通过模块化的组件、多种模型构建方式以及与 TensorFlow 底层功能的紧密集成,极大地简化了从原型设计到生产部署的整个流程。对于希望快速实现和迭代深度学习想法的开发者和研究人员来说,tf.keras是一个不可或缺的工具。
2025-05-16 15:09:25
963
原创 讨论混合精度训练(Mixed Precision Training)的优势(面试题200合集,高频、关键)
Casting (类型转换): 自动将模型的某些部分的输入和操作转换为FP16(或BF16)。例如,在PyTorch中,上下文管理器会自动为白名单中的操作选择FP16,并确保输入数据也转换为FP16。权重参数从FP32主副本转换为FP16副本供计算使用。FP16计算得到的梯度在更新主权之前转换回FP32。维护一份FP32精度的模型参数。梯度更新作用于这份FP32参数,以避免FP16精度不足导致的更新量丢失。将损失函数值乘以一个缩放因子,以将反向传播中的梯度值移出FP16的下溢区域。
2025-05-16 15:05:43
464
原创 如何在 PyTorch 中实现模型的保存和加载?(面试题200合集,高频、关键)
在 PyTorch 中,推荐使用来保存和加载模型参数。这种方法灵活、轻量且更安全。虽然保存整个模型看起来更直接,但由于其对代码结构的依赖和潜在的安全风险,通常不建议使用。对于复杂的训练任务,保存完整的 checkpoint(包括模型state_dict、优化器state_dict、当前 epoch 和 loss 等)是保证训练可恢复性的关键。同时,熟练处理不同设备间的模型加载(通过)也是实际应用中常见的需求。理解这些核心概念和最佳实践,将使你能够更有效地管理和部署你的 PyTorch 模型。
2025-05-16 14:39:28
599
原创 解释深度学习中的自动微分(Automatic Differentiation)(面试题200合集,高频、关键)
自动微分(AD)是一种计算函数导数(梯度)的技术,它能够精确地(达到机器精度)计算由计算机程序定义的函数的导数值。任何复杂的函数计算过程,无论多么复杂,都可以分解为一系列有限的基本运算(如加、减、乘、除、指数、对数、三角函数等)的组合。由于这些基本运算的导数是已知的,AD 通过系统地、自动地应用链式法则 (Chain Rule)到这些基本运算上,从而计算出整个复杂函数的导数。关键特性:精确性:与数值微分不同,AD 计算的是精确导数值,而非近似值。自动化。
2025-05-16 14:31:08
482
原创 解释矩阵乘法在神经网络中的应用(面试题200合集,高频、关键)
从最简单的感知器到复杂的深度学习模型,如卷积神经网络(CNNs)、循环神经网络(RNNs)以及Transformer,矩阵乘法无处不在,它不仅提供了简洁的数学表达方式,更重要的是使得大规模并行计算成为可能,从而推动了人工智能的飞速发展。它不仅提供了一种优雅而强大的方式来表达神经元之间的复杂交互,更重要的是,它使我们能够利用现代计算硬件的并行处理能力来训练和部署日益庞大和复杂的深度学习模型。矩阵乘法不仅是全连接层的核心,在其他更复杂的网络结构中也扮演着关键角色,尽管有时会以更间接的方式出现。
2025-05-16 14:19:09
607
原创 什么是特征分解(Eigen Decomposition)?它在 PCA 中的应用是什么?(面试题200合集,高频、关键)
1. 直观理解:寻找变换下的“不变”与“伸缩”想象一个方阵AAA代表着一种空间变换(比如旋转、拉伸、剪切)。在这个变换作用下,空间中的大部分向量的方向都会发生改变。然而,可能存在一些特殊的向量,当它们经过矩阵AAA的变换后,方向保持不变(或者仅仅是反向,即方向仍在同一直线上),只是长度上发生了伸缩。这些特殊方向的向量就是特征向量(Eigenvectors),而它们在长度上的伸缩比例就是对应的特征值(Eigenvalues)。特征向量 (vvv:一个非零向量。当它乘以方阵AAA时,得到的结果A。
2025-05-16 11:31:36
677
原创 解释 SVD(奇异值分解)及其在降维中的应用(面试题200合集,高频、关键)
简单来说,SVD 可以被看作是一种将复杂的数据矩阵拆解成更简单、更具代表性部分的方法。想象你有一张包含大量信息的复杂图片,SVD 能够帮助你找出图片中最主要的构成元素(核心特征),并告诉你这些元素各自的重要性。从数学上讲,对于任意一个m×nm \times nm×n的矩阵AAAAUΣVTAUΣVTAAA:原始数据矩阵,维度为m×nm \times nm×n。例如,它可以是一个mmm个用户对nnn个商品的评分矩阵,或者mmm个样本含有nnn。
2025-05-16 11:28:41
801
原创 如何在深度学习框架中实现数据加载和预处理?(面试题200合集,高频、关键)
在深度学习中,数据加载和预处理是模型训练前至关重要的步骤,它们直接影响模型的训练效率、性能和泛化能力。目前,PyTorch和TensorFlow是两个最主流的深度学习框架,它们都提供了强大且灵活的数据加载和预处理工具。掌握这些核心概念、框架实现细节以及常见问题的应对,将能很好地应对面试中关于数据加载和预处理的提问。) 提供了一些预处理层,可以直接作为模型的一部分,这样预处理逻辑就和模型一起保存和部署了(例如。对象代表了一系列元素,其中每个元素是模型的一个输入(或一对输入和标签)。是一个迭代器,它封装了。
2025-05-16 11:21:29
785
原创 讨论 GPU 在深度学习中的作用。如何优化 GPU 利用率?(面试题200合集,高频、关键)
GPU(Graphics Processing Unit,图形处理器)在深度学习领域扮演着至关重要的角色,可以说是推动本轮人工智能浪潮的关键硬件基石。其强大的并行计算能力使得训练和部署复杂的深度学习模型成为可能。理解GPU的工作原理及其在深度学习中的作用,以及如何优化其利用率,对于深度学习工程师和研究人员来说是必备的技能。
2025-05-16 09:53:41
792
原创 解释分布式训练(Distributed Training)的概念和方法(面试题200合集,高频、关键)
分布式训练(Distributed Training)是指利用多台计算设备(通常称为工作节点或worker,例如多个GPU、TPU,甚至是多台物理机器)并行地训练一个机器学习模型,尤其是计算密集型和数据密集型的深度学习模型。其核心目标是解决单一设备在内存容量、计算能力或训练时间上的瓶颈,从而加速模型训练过程、支持更大规模的模型和数据集。
2025-05-15 17:14:04
656
原创 解释 Hessian 矩阵及其在优化中的作用(面试题200合集,中频、重要)
1. 从一阶导数到二阶导数回顾一下,对于单变量函数fxf(x)fx一阶导数f′xf'(x)f′x:描述了函数在点xxx处的变化率或斜率。如果f′x0f'(x) > 0f′x0,函数在该点递增;如果f′x0f'(x) < 0f′x0,函数在该点递减;如果f′x0f'(x) = 0f′x0,该点可能是极值点或拐点。二阶导数f′′xf''(x)f′′x:描述了一阶导数的变化率,即函数在该点处凹凸性或曲率。如果f′′x0。
2025-05-15 17:10:05
467
具有运动检测和地理围栏功能的复杂、电池敏感、跨平台背景地理定位_TypeScript_Objective-C_下载.zip
2023-05-02
是一个检测App何时进入后台前台的组件,同时支持多进程检测_Kotlin_Java_下载.zip
2023-05-02
Cordova启用了后台地理定位,因此您的MeteorCordova应用程序即使在关闭暂停时也可以更新位置_JavaSc.zip
2023-05-02
连接图像滑块以显示不同图像的小型JavaScript应用程序_CSS_HTML_下载.zip
2023-05-02
一个使用NSURLSession后台传输在文件滚动时上传文件的LogFileManager_Objective-C_Sh.zip
2023-05-02
专为Laravel5整理的后端模板,只写了由页面跳转,给开发者最大的空间自己开发_PHP_HTML_下载.zip
2023-05-02
运行后台服务以按预定义的时间间隔获取用户位置并将其经纬度和地址存储到数据库中的演示。-它显示正在进行的通知以显示服务正在.zip
2023-05-02
软件开发综合项目——辛德瑞拉婚纱礼服定制网站,使用SSM框架和Maven管理工具,开发环境为EclipseJeePhot.zip
2023-09-15
一个基于SSM框架的个人日志系统(个人技术博客)_JavaScript_CSS_源码_下载.zip
2023-09-15
采用SSM框架的电商网站,数据库采用和MySql。包含用户管理,订单,品类,产品,购物车,地址,在线支付七个模块。项目的.zip
2023-09-15
基于SSM的电影购票系统框架:Spring+SpringMVC+MyBatis+JSP数据库和工具:MySql,Navi.zip
2023-09-15
基于SSM框架实现的高并发商品秒杀系统,c3p0作为连接池,Redis为存储实现高并发,同时通过MySQL优化降低了网络.zip
2023-09-15
ssm集成项目,crm管理系统,crm.sql为数据库文件,使用时需要修改configmysql.properties输.zip
2023-09-15
django-tracking2跟踪访问者和注册用户在您网站上花费的时间长度 虽然这适用于网站,但更适用于具有注册用户的.zip
2023-09-05
一个可以用代号处理控件的阴影效果,以及用代号在TextView、EditText、Button等控件设置selector.zip
2023-05-03
证件照片背景颜色替换;输入一张证件照片,指定背景颜色,运行程序,自动替换证件照片底色_Python_下载.zip
2023-05-03
使用便宜的检测器和RaspberryPi监测和记录背景辐射水平_Python_Shell_下载.zip
2023-05-03
当没有缓冲区打开时,在应用程序的后台显示应用程序提示_JavaScript_Less_下载.zip
2023-05-02
这是一个使用Swift中的CoreML和CoreImage示例去除图像背景_Swift_下载.zip
2023-05-02
第一个使用jQueryCycle插件作为全屏背景幻灯片的jQuery插件_JavaScript_CSS_下载.zip
2023-05-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人