LLM 部署(6)——KTransformers_4090 单卡部署 deepseekseek_r1

0 基本内容

0.1 清华团队开源项目
  • KTransformers:支持 24GB 显存本地运行
  • MOE 架构稀疏性特点
  • GPU/CPU 异构计算划分策略
  • 高性能 CPU 和 GPU 算子
  • CUDA Graph 加速技术
  • 兼容 huggingface transformers API
  • ChatGPT 式 WEB 界面
0.2 部署环境配置
  • CPU:Intel Xeon Gold 6545(Intel 10940X)
  • GPU:NVIDIA GeForce RTX4090(RTX2080Ti)
  • Memory:DDR5-4800 server DRAM(1TB)(DDR4-2400 DRAM (128GB)with some virtual Memory)
0.3 性能提升
  • 预处理速度:最高 286tps
  • 推理生成速度:最高 14tps
0.4 技术细节
  • MLA 算子优化 attention 计算
  • 计算强度决定划分策略
  • CPU 和 GPU 高性能算子集成
  • 灵活切换量化策略和内核转换
0.5 社区支持
  • github:https://github.com/kvcache-ai/ktransformers

1 硬件配置需求

  • 显卡:单张 NVIDIA RTX 4090D(24GB 显存)即可满足需求,Q4_K_M 量化版仅需 14GB 显存。
  • 内存:标准 DDR5-4800 服务器内存,推荐 382GB 以上。
  • CPU:支持双路 Intel Xeon Gold 6454S(共 64 核)以发挥 NUMA 架构优势。

2 核心技术原理

2.1 异构计算划分策略
  • 将 MoE 架构中计算强度低的稀疏路由专家层(Routed Expert)卸载到 CPU/DRAM 处理,利用 llamafile 提供高速 CPU 算子。
  • 保留计算强度高的稠密层(MLA 注意力机制、共享专家层)在 GPU 处理,采用 Marlin 算子加速量化矩阵计算,相比传统方法提速 3.87 倍。
  • 划分依据:通过计算强度(MLA > Shared Expert > Routed Expert)动态分配,直到 GPU 显存占满。
2.2 KV 缓存优化
  • 重构 MLA(Multi-Layered Attention)算子的权重融合技术,将q_projout_proj权重直接融合,减少 KV 缓存体积达 70%。
  • 采用 CUDA Graph 加速技术,将多个 GPU 操作合并为单个内核调用,降低调度开销。

3 部署流程

3.1 环境准备
  • 安装 KTransformers 框架,兼容 HuggingFace Transformers API。
  • 配置双 NUMA 节点内存绑定,确保 CPU 多线程负载均衡。
3.2 模型加载与量化
  • 下载 DeepSeek-R1 671B 的Q4_K_M量化版本(约 382GB 存储需求)。
  • 通过 YAML 模板注入框架选择量化策略,例如:
quantization:
       method: Q4_K_M
       expert_offload: cpu_llamafile
       dense_layers: gpu_marlin
3.3 性能调优
  • 预处理加速:启用AMX指令集优化,双路 64 核 CPU 可达到 286 tokens/s。
  • 生成加速:选择6专家激活模式(仅 V0.3+ 支持),生成速度提升至 14 tokens/s。
  • 内存管理:采用 NUMA 感知的内存分配策略,避免跨节点访问延迟。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值