Machine learning(9): Regularisation

本文探讨了特征选择的重要性,正则化的通用概念,以及结构风险最小化在支持向量机(SVMs)中的应用。详细介绍了L2和L1惩罚在减少过拟合中的作用,并通过图像展示了L1和L2惩罚的区别。最后,讨论了偏置与方差作为惩罚权重函数的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Feature selection

在这里插入图片描述
在这里插入图片描述

Regularisation: general idea

在这里插入图片描述

Structural risk minimization

在这里插入图片描述

SVMs and structural risk minimisation

在这里插入图片描述

L2 and L1 penalization

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

The pictures of L1 and L2 penalization

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Bias and variance as a function of the weight of penalty

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值