线性代数(一)——向量基础

该博客是线性代数的引子,介绍了向量、线性组合和矩阵等相关知识。包括向量的加法、纯量乘法、线性组合,向量的模、点乘,以及矩阵与向量的运算、线性等式求解等,还提及向量的独立性与矩阵的可逆性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量基础

  • 1、向量和线性组合
  • 2、向量的模和点乘
  • 3、矩阵
  • 4、参考

线性代数的核心是向量的加和乘两种运算的组合,本篇博客为线性代数的一个引子,主要从向量、线性组合和矩阵逐步引出线性代数的相关知识。

1、向量和线性组合

首先介绍的是向量相关,向量是基础。
已知列向量:υ=[v1v2]\boldsymbol{\upsilon}=\left[\begin{matrix} v_1 \\ v_2\end{matrix} \right]υ=[v1v2]ω=[w1w2]\boldsymbol{\omega}=\left[\begin{matrix} w_1 \\ w_2\end{matrix} \right]ω=[w1w2]

向量加法:υ+ω=[v1+w1v2+w2]\boldsymbol{\upsilon}+\boldsymbol{\omega}=\left[\begin{matrix} v_1+w_1 \\ v_2+w_2\end{matrix} \right]υ+ω=[v1+w1v2+w2]

纯量乘法:cυ=[cv1cv2]c\boldsymbol{\upsilon}=\left[\begin{matrix} cv_1 \\ cv_2\end{matrix} \right]cυ=[cv1cv2]ccc是标量;

线性组合:我们将υ\boldsymbol{\upsilon}υω\boldsymbol{\omega}ω的加法运算和标量乘法运算结合起来,得到的结果称为υ\boldsymbol{\upsilon}υω\boldsymbol{\omega}ω的线性组合,即cυ+dωc\boldsymbol{\upsilon}+d\boldsymbol{\omega}cυ+dω
两个向量的线性组合就是线性代数的最简单的形式。

下图展示了向量加法的结果:
在这里插入图片描述
Tip:列向量υ=[abc]\boldsymbol{\upsilon}=\left[\begin{matrix} a \\ b \\ c\end{matrix} \right]υ=abc也可以写为υ=(a,b,c)\boldsymbol{\upsilon}=( a , b , c )υ=(a,b,c),这两种形式都是表示列向量,后一种可以节约书写空间。另外,行向量表示为υ=[a,b,c]\boldsymbol{\upsilon}=[ a , b , c ]υ=[a,b,c],平躺着并用方括号表示。

2、向量的模和点乘

点乘(内积):点乘为两个向量对应位置上元素乘积的和。
向量υ=(v1,v2,v3,...,vn)\boldsymbol{\upsilon}=( v_1 , v_2 , v_3,...,v_n )υ=(v1,v2,v3,...,vn)和向量ω=(w1,w2,w3,...,wn)\boldsymbol{\omega}=( w_1 , w_2 , w_3,...,w_n )ω=(w1,w2,w3,...,wn)的点乘表示为:
υ⋅ω=v1w1+v2w2+...+vnwn\boldsymbol{\upsilon} \cdot \boldsymbol{\omega}=v_1w_1+v_2w_2+...+v_nw_nυω=v1w1+v2w2+...+vnwn
向量υ=(v1,v2,v3,...,vn)\boldsymbol{\upsilon}=( v_1 , v_2 , v_3,...,v_n )υ=(v1,v2,v3,...,vn)和其自身的点乘为:
υ⋅υ=v12+v22+...+vn2=(v1−0)2+(v2−0)2+...+(vn−0)2 \boldsymbol{\upsilon} \cdot \boldsymbol{\upsilon}=v^2_1+v^2_2+...+v^2_n=(v_1-0)^2+(v_2-0)^2+...+(v_n-0)^2 υυ=v12+v22+...+vn2=(v10)2+(v20)2+...+(vn0)2
向量的长度(模)
则在nnn维坐标系中,υ⋅υ\boldsymbol{\upsilon} \cdot \boldsymbol{\upsilon}υυ表示点(v1,v2,v3,...,vn)( v_1 , v_2 , v_3,...,v_n)(v1,v2,v3,...,vn)到坐标原点的距离的平方,即向量υ\boldsymbol{\upsilon}υ的长度的平方,所以向量υ\boldsymbol{\upsilon}υ的长度为:
length=∥υ∥=υ⋅υ=(v12+v22+...+vn2)1/2 \mathbf{length}= \left \|\boldsymbol{\upsilon}\right\|=\sqrt{\boldsymbol{\upsilon} \cdot \boldsymbol{\upsilon}}=(v^2_1+v^2_2+...+v^2_n)^{1/2} length=υ=υυ=(v12+v22+...+vn2)1/2
如下图所示:
二维向量和三维向量的长度
单位向量
单位向量是长度等于1的向量,则向量υ\boldsymbol{\upsilon}υ的单位向量u\boldsymbol{u}u为任何非零向量除以该向量的长度,即:
u=υ∥υ∥ \boldsymbol{u}=\frac{\boldsymbol{\upsilon}}{ \left \|\boldsymbol{\upsilon}\right\|} u=υυ
下图为单位向量的示意图:
单位向量
对于非零向量,当向量υ\boldsymbol{\upsilon}υ垂直向量ω\boldsymbol{\omega}ω时,它们的点积为零,即:
υ⋅ω=0\boldsymbol{\upsilon} \cdot \boldsymbol{\omega}=0υω=0
可结合勾股定理进行证明。
向量夹角
设向量υ\boldsymbol{\upsilon}υ和向量ω\boldsymbol{\omega}ω的夹角为θ\thetaθ,当υ⋅ω!=0\boldsymbol{\upsilon} \cdot \boldsymbol{\omega}!=0υω!=0时,会有:
{θ<90∘,υ⋅ω>0θ>90∘,υ⋅ω<0 \left\{\begin{array}{cc} \theta<90^{\circ}, & \boldsymbol{\upsilon} \cdot \boldsymbol{\omega}>0\\ \theta>90^{\circ}, & \boldsymbol{\upsilon} \cdot \boldsymbol{\omega}<0 \end{array}\right. {θ<90,θ>90,υω>0υω<0
除此之外,两个单位向量的点乘也表示两个向量夹角θ\thetaθcosinecosinecosine余弦值:
u⋅U=cosθ,u⋅U≤1 \boldsymbol{u} \cdot \boldsymbol{U}=cos{\theta},\boldsymbol{u} \cdot \boldsymbol{U}\leq1 uU=cosθuU1
单位向量的点乘等于两向量夹角的余弦值
那么对于非单位向量的向量υ\boldsymbol{\upsilon}υ和向量ω\boldsymbol{\omega}ω的夹角的余弦值应该怎么表示?
综上所述,应该为这两个向量对应的单位向量的点乘,即:
cosθ=(υ∥υ∥)⋅(ω∥ω∥)=υ⋅ω∥υ∥∥ω∥≤1 cos\theta = (\frac{\boldsymbol{\upsilon}}{\left \|\boldsymbol{\upsilon}\right\|}) \cdot (\frac{\boldsymbol{\omega}}{\left \|\boldsymbol{\omega}\right\|})=\frac{\boldsymbol{\upsilon} \cdot \boldsymbol{\omega}}{\left \|\boldsymbol{\upsilon}\right\|\left \|\boldsymbol{\omega}\right\|}\leq1 cosθ=(υυ)(ωω)=υωυω1

由此可引出两个著名的不等式:
柯西-施瓦兹-布尼亚科夫斯基不等式∣υ⋅ω∣≤∥υ∥∥ω∥| \boldsymbol{\upsilon} \cdot \boldsymbol{\omega}|\leq{\left \|\boldsymbol{\upsilon}\right\|\left \|\boldsymbol{\omega}\right\|}υωυω
三角不等式:∥υ+ω∥≤∥υ∥+∥ω∥{\left \|\boldsymbol{\upsilon}+\boldsymbol{\omega}\right\|}\leq{\left \|\boldsymbol{\upsilon}\right\|+\left \|\boldsymbol{\omega}\right\|}υ+ωυ+ω

3、矩阵

接下来,我们从向量过度到矩阵,用矩阵表示线性组合。前面介绍了向量之间的运算,那么当一个矩阵乘以一个向量应如何去理解呢?
首先给定三个向量:
u=[1−10],υ=[01−1],ω=[001]. \boldsymbol{u}=\left[\begin{matrix} 1 \\ -1 \\ 0\end{matrix} \right],\boldsymbol{\upsilon}=\left[\begin{matrix} 0 \\ 1 \\ -1\end{matrix} \right],\boldsymbol{\omega}=\left[\begin{matrix} 0 \\ 0 \\ 1\end{matrix} \right]. u=110,υ=011,ω=001.
则这三个三维向量的线性组合为:x1u+x2υ+x3ωx_1\boldsymbol{u}+x_2\boldsymbol{\upsilon}+x_3\boldsymbol{\omega}x1u+x2υ+x3ω,即:
x1[1−10]+x2[01−1]+x3[001]=[x1x2−x1x3−x2] x_1\left[\begin{matrix} 1 \\ -1 \\ 0\end{matrix} \right]+x_2\left[\begin{matrix} 0 \\ 1 \\ -1\end{matrix} \right]+x_3\left[\begin{matrix} 0 \\ 0 \\ 1\end{matrix} \right]=\left[\begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2\end{matrix} \right] x1110+x2011+x3001=x1x2x1x3x2
那么用矩阵重写上面的线性组合为:
Ax=[100−1100−11][x1x2x3]=[x1x2−x1x3−x2]=[b1b2b3]=b A\boldsymbol{x}=\left[\begin{matrix} 1 & 0 & 0\\ -1 & 1 & 0\\ 0 & -1 & 1\end{matrix} \right]\left[\begin{matrix} x_1 \\ x_2 \\ x_3\end{matrix} \right]=\left[\begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2\end{matrix} \right]=\left[\begin{matrix} b_1 \\ b_2 \\ b_3\end{matrix} \right]=\boldsymbol{b} Ax=110011001x1x2x3=x1x2x1x3x2=b1b2b3=b
从以上两式可以看出,矩阵A乘以向量x\boldsymbol{x}x等同于矩阵AAA的三个列向量的线性组合x1u+x2υ+x3ωx_1\boldsymbol{u}+x_2\boldsymbol{\upsilon}+x_3\boldsymbol{\omega}x1u+x2υ+x3ω,即AxA\boldsymbol{x}Ax的结果就是矩阵A的各列的线性组合

此外,我们也可以使用行的点乘来计算AxA\boldsymbol{x}Ax
Ax=[100−1100−11][x1x2x3]=[(1,0,0)⋅(x1,x2,x3)(−1,1,0)⋅(x1,x2,x3)(0,−1,1)⋅(x1,x2,x3)]=[x1x2−x1x3−x2]=[b1b2b3]=b A\boldsymbol{x}=\left[\begin{matrix} 1 & 0 & 0\\ -1 & 1 & 0\\ 0 & -1 & 1\end{matrix} \right]\left[\begin{matrix} x_1 \\ x_2 \\ x_3\end{matrix} \right]=\left[\begin{matrix} (1,0,0) \cdot (x_1,x_2,x_3) \\ (-1,1,0) \cdot (x_1,x_2,x_3) \\ (0,-1,1) \cdot (x_1,x_2,x_3)\end{matrix} \right]=\left[\begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2\end{matrix} \right]=\left[\begin{matrix} b_1 \\ b_2 \\ b_3\end{matrix} \right]=\boldsymbol{b} Ax=110011001x1x2x3=(1,0,0)(x1,x2,x3)(1,1,0)(x1,x2,x3)(0,1,1)(x1,x2,x3)=x1x2x1x3x2=b1b2b3=b
线性等式
前面我们是已知x1,x2,x3x_1,x_2,x_3x1,x2,x3,来计算等号右侧的b\boldsymbol{b}b,那么,如果已知等号右侧的b\boldsymbol{b}b,如何来求x\boldsymbol{x}x呢?
旧问题: 计算线性组合x1u+x2υ+x3ωx_1\boldsymbol{u}+x_2\boldsymbol{\upsilon}+x_3\boldsymbol{\omega}x1u+x2υ+x3ω为了得出b\boldsymbol{b}b
新问题:u,υ,ω\boldsymbol{u},\boldsymbol{\upsilon},\boldsymbol{\omega}u,υ,ω的哪种组合可以生成指定的b\boldsymbol{b}b

很明显,这是一个互逆的问题。将等式Ax=bA\boldsymbol{x}=\boldsymbol{b}Ax=b改写成我们熟悉的方程式组为:
{x1=b1−x1+x2=b2−x2+x3=b3 \begin{cases} x_1&&&&&=&b_1&\\ -x_1&+&x_2&&&=&b_2& \\ &-&x_2&+&x_3&=&b_3 \end{cases} x1x1+x2x2+x3===b1b2b3
可轻易对该方程组求解:
{x1=b1x2=b1+b2x3=b1+b2+b3 \begin{cases} x_1=&b_1&\\ x_2=&b_1&+&b_2& \\ x_3=&b_1&+&b_2&+&b_3& \end{cases} x1=x2=x3=b1b1b1++b2b2+b3
写成矩阵形式为:x=A−1b\boldsymbol{x}=A^{-1}\boldsymbol{b}x=A1b,我们将A−1A^{-1}A1称作AAA的逆矩阵,此时的AAA为可逆矩阵。

多个向量的独立和非独立性
多个向量之间的独立性和相关性
如上图所示,左右两个坐标系里向量u、υ\boldsymbol{u}、\boldsymbol{\upsilon}uυ是一样的,这两个向量的线性组合构成一个同样的二维平面,关键问题是第三个向量是否在这个平面里:
独立性:ω\boldsymbol{\omega}ω不在u、υ\boldsymbol{u}、\boldsymbol{\upsilon}uυ构成的平面中,即:
只有当x1=0,x2=0、x3=0x_1=0,x_2=0、x_3=0x1=0,x2=0x3=0时,才满足等式x1u+x2υ+x3ω=0x_1\boldsymbol{u}+x_2\boldsymbol{\upsilon}+x_3\boldsymbol{\omega}=\boldsymbol{0}x1u+x2υ+x3ω=0
如果矩阵AAA的列是独立的,则Ax=0A\boldsymbol{x}=\boldsymbol{0}Ax=0只有一个解,AAA被称作可逆矩阵(非奇异矩阵)。
非独立性:ω∗\boldsymbol{\omega^*}ωu、υ\boldsymbol{u}、\boldsymbol{\upsilon}uυ构成的平面中,即:
存在多组x1,x2,x3x_1,x_2,x_3x1,x2,x3,满足x1u+x2υ+x3ω∗=0x_1\boldsymbol{u}+x_2\boldsymbol{\upsilon}+x_3\boldsymbol{\omega^*}=\boldsymbol{0}x1u+x2υ+x3ω=0
如果矩阵CCC的列是非独立的,则Cx=0C\boldsymbol{x}=\boldsymbol{0}Cx=0存在多个解,矩阵CCC被称作奇异矩阵。

4、参考

[1] Introduction Linear Algebra,Fifth Edition,Giibert Strang.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值