
机器学习学习笔记
文章平均质量分 61
机器学习学习笔记
SK_Jaco
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习学习笔记.day6
周志华《机器学习》 学习笔记 最近开始学习机器学习,参考书籍西瓜书,做点笔记。 第六章 支持向量机 6.1 间隔与支持向量 在样本空间中找到一个超平面,将不同类别样本分开,超平面应选择尽量靠中间,容错率较好; 为超平面的线性方程,其中ω为平面法向量,b为位移项; 由点到面距离公式,可得到样本空间中任一点到超平面的距离:; 若yi=+1,则>0;若yi=-1,则原创 2017-09-13 22:30:21 · 623 阅读 · 0 评论 -
Linux环境下搭建python和tensorflow
###环境 Python版本:3.6.8 Python包:Python-3.6.8.tgz 服务器:192.168.200.17 安装目录:/data/component/python3 ###Python安装 1.安装准备 安装Python前需要安装部分插件 sudo yum install zlib-devel bzip2-devel openssl-devel ncurses-devel s...原创 2019-01-28 09:48:31 · 1172 阅读 · 0 评论 -
机器学习学习笔记.day11
周志华《机器学习》 学习笔记 最近开始学习机器学习,参考书籍西瓜书,做点笔记。 第十一章 特征选择与稀疏学习 11.1 子集搜索与评价 特征选择:从给定的特征集合中选择出相关特征子集的过程(重要的数据预处理过程); 无关特征:与训练任务无关的特征;冗余特征:包含的信息能从其他特征中推演出来; 子集搜索:前向、后向、双向; 子集评价:计算子集增益; 信息增益越大意味着原创 2017-09-21 22:54:37 · 442 阅读 · 0 评论 -
机器学习学习笔记.day10
周志华《机器学习》 学习笔记 最近开始学习机器学习,参考书籍西瓜书,做点笔记。 第十章 降维与度量学习 本章学习过程参考博客: 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用: 连接:SVD奇异值分解 10.1 k临近学习 k临近学习(kNN):监督学习方法。给定测试样本,基于某种距离度量找出训练集中最近的k个样本,原创 2017-09-20 23:08:40 · 468 阅读 · 0 评论 -
机器学习学习笔记.day9
周志华《机器学习》 学习笔记 最近开始学习机器学习,参考书籍西瓜书,做点笔记。 第九章 聚类 9.1 聚类任务 聚类是无监督学习中研究最多,应用最广的方法; 聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个簇; 分类后的每个簇的由使用者根据特征和需求命名; 9.2 性能度量 聚类的性能度量大致两类:将聚类结果于某个参考模型比较的外部指标;直接原创 2017-09-19 22:46:48 · 727 阅读 · 0 评论 -
机器学习学习笔记.day5
周志华《机器学习》 学习笔记 最近开始学习机器学习,参考书籍西瓜书,做点笔记。 第五章 神经网络 5.1 神经元模型 其中x1,x2,…,xn为输入,w1,w2,…,wn为神经元连接权重,θ为阈值,y为输出; 将权重与输入乘积累加起来,再减去阈值,通过激活函数得到输出; 5.2 感知机与多层网络 通过一个输入层和一个输出层的组合可以得到与、或、非运原创 2017-09-12 22:53:39 · 452 阅读 · 0 评论 -
机器学习学习笔记——决策树
1.基本流程 决策树: 决策树学习的目的是为了产生一棵处理未见示例能力强的决策树; 决策树学习基本算法:决策树生成是一个递归的过程,有三种情况会导致递归返回: 1.当前结点包含的样本全都属于同一类别,此时不需要划分; 2.当前结点属性集为空,或者所有样本属性取值相同,此时把当前结点标记为叶结点,类别设定为样本最多的类别(后验分布); 3.当前结点样本集为空,...原创 2017-09-11 22:39:56 · 471 阅读 · 0 评论 -
机器学习学习笔记.day8
周志华《机器学习》 学习笔记 最近开始学习机器学习,参考书籍西瓜书,做点笔记。 第八章 集成学习 8.1 个体与集成 集成学习:通过构建并结合多个学习起来完成学习任务; 集成目标:个体学习期有一定的准确性,学习器间有一定的差异; 在二分类问题y{-1,1}中,超过半数分类器正确,则集成分类 随着集成中个体分类器数目T的增大,集成的错误率将指数级下降,最终趋于零原创 2017-09-18 23:11:42 · 590 阅读 · 0 评论 -
机器学习学习笔记——线性模型和Logistic回归
1.基本形式 给定由d个属性描述的示例,其中是在第个属性上的取值,线性模型通过对属性的线性组合来预测的函数: (一般写成向量形式); 参数w的大小可以反映对应属性的“偏好”; 2.线性回归 使用均方误差衡量预测与真实之间误差大小,即,求最小值使误差最小; ...原创 2017-09-08 23:24:56 · 1821 阅读 · 0 评论 -
机器学习学习笔记.day13
周志华《机器学习》 学习笔记 最近开始学习机器学习,参考书籍西瓜书,做点笔记。 第十三章 半监督学习 13.1 未标记样本 让学习器不依赖外界交互、自动的利用未标记样本来提升学习性能,就是半监督学习; 聚类假设:假设数据存在簇结构,同一个簇的样本属于同一个类别; 流形假设:假设数据分布在一个流行结构上,邻近的样本拥有相似的输出值; 半监督学习可进一步分为纯半监督学习和原创 2017-09-24 22:19:27 · 747 阅读 · 0 评论 -
机器学习学习笔记.day2
周志华《机器学习》 学习笔记 最近开始学习机器学习,参考书籍西瓜书,做点笔记。 第二章 模型评估与选择 错误率:分类错误的样本数占样本总数的比例,E=a/m。 精度:分类正确的样本数占样本总数的比例,精确度=1-错误率。 过拟合:训练样本学的太好,导致泛化性能下降。 欠拟合:训练样本学的不太好。 测试集与训练集尽量互斥,测试样本尽量不在训练样本中出现。 产生原创 2017-09-07 22:53:11 · 402 阅读 · 0 评论 -
机器学习学习笔记.day12
周志华《机器学习》 学习笔记 最近开始学习机器学习,参考书籍西瓜书,做点笔记。原创 2017-09-23 23:05:47 · 531 阅读 · 0 评论 -
机器学习学习笔记.day1
周志华《机器学习》 学习笔记 最近开始学习机器学习,参考书籍西瓜书,做点笔记。 第一章.绪论 第一章主要介绍机器学习中的名词、发展、现状等。 机器学习研究内容:计算机上,从数据中产生模型的算法。 数据集:记录的集合。 样本:数据集中每条记录的对一个对象的描述。 属性、特征:反应对象某方面表现的事项。 属性值:属性的取值。 属性空间、样本空间:属性所张成的空间。 特征向量原创 2017-09-06 22:54:52 · 456 阅读 · 0 评论 -
机器学习学习笔记——贝叶斯分类器
1.贝叶斯决策论 贝叶斯决策论是概率框架下实施决策的基本方法,对于分类任务,在所有相关概率都已知的理想情形下,贝叶斯决策论基于这些概率和误判损失选择最有类别标记。 判别式模型:给定样本,可通过直接建模来预测,如决策树、神经网络、SVM; 生成式模型:对联合概率分布建模,然后再得到,如贝叶斯分类器。 基于贝叶斯定理,可写为: ...原创 2017-09-14 22:48:55 · 568 阅读 · 0 评论 -
机器学习学习笔记——KNN
1.KNN原理 存在一个样本数 据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输人没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。 2.KNN流程 计算已知类别数据集中的点与当前点之间的距离; 按照距离递增次序排序; 选取与当前点距离最小的走个点; 确定...原创 2019-05-10 22:27:20 · 493 阅读 · 0 评论