10. 二分查找(下) 二分查找的四种变形问题

本文深入探讨了二分查找算法的四种常见变形,包括查找第一个等于、最后一个等于、第一个大于等于及最后一个小于等于给定值的元素,并分析了二分查找在实际应用中的局限性和优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、四种常见的二分查找变形问题
1.查找第一个值等于给定值的元素

    //查找a里面第一个等于value的元素的位置
    public static int bsearch2(int[] a, int n, int value) {
        int low = 0;
        int high = n - 1;
        while (low <= high) {
            int mid =  low + ((high - low) >> 1);
            if (a[mid] > value) {
                high = mid - 1;
            } else if (a[mid] < value) {
                low = mid + 1;
            } else {
                if ((mid == 0) || (a[mid - 1] != value)) return mid;
                else high = mid - 1;
            }
        }
        return -1;
    }


2.查找最后一个值等于给定值的元素

    //查找a里面最后一个等于value的元素的位置
    public int bsearch3(int[] a, int n, int value) {
        int low = 0;
        int high = n - 1;
        while (low <= high) {
            int mid =  low + ((high - low) >> 1);
            if (a[mid] > value) {
                high = mid - 1;
            } else if (a[mid] < value) {
                low = mid + 1;
            } else {
                if ((mid == n - 1) || (a[mid + 1] != value)) return mid;
                else low = mid + 1;
            }
        }
        return -1;
    }


3.查找第一个大于等于给定值的元素

    //查找a里面第一个大于等于value的元素的位置
    public int bsearch4(int[] a, int n, int value) {
        int low = 0;
        int high = n - 1;
        while (low <= high) {
            int mid =  low + ((high - low) >> 1);
            if (a[mid] >= value) {
                if ((mid == 0) || (a[mid - 1] < value)) return mid;
                else high = mid - 1;
            } else {
                low = mid + 1;
            }
        }
        return -1;
    }


4.查找最后一个小于等于给定值的元素

    //查找a里面最后一个小于等于value的元素的位置
    public int bsearch7(int[] a, int n, int value) {
        int low = 0;
        int high = n - 1;
        while (low <= high) {
            int mid =  low + ((high - low) >> 1);
            if (a[mid] > value) {
                high = mid - 1;
            } else {
                if ((mid == n - 1) || (a[mid + 1] > value)) return mid;
                else low = mid + 1;
            }
        }
        return -1;
    }


二、适用性分析
1.凡事能用二分查找解决的,绝大部分我们更倾向于用散列表或者二叉查找树,即便二分查找在内存上更节省,但是毕竟内存如此紧缺的情况并不多。
2.求“值等于给定值”的二分查找确实不怎么用到,二分查找更适合用在”近似“查找问题上。比如上面讲几种变体。
三、思考
1.如何快速定位出一个IP地址的归属地?
[202.102.133.0, 202.102.133.255] 山东东营市
[202.102.135.0, 202.102.136.255] 山东烟台
[202.102.156.34, 202.102.157.255] 山东青岛
[202.102.48.0, 202.102.48.255] 江苏宿迁
[202.102.49.15, 202.102.51.251] 江苏泰州
[202.102.56.0, 202.102.56.255] 江苏连云港
假设我们有 12 万条这样的 IP 区间与归属地的对应关系,如何快速定位出一个IP地址的归属地呢?


2.如果有一个有序循环数组,比如4,5,6,1,2,3。针对这种情况,如何实现一个求“值等于给定值”的二分查找算法?

package leetcode;

class leetcode33 {
    public static int search(int[] nums, int target) {
        int n = nums.length-1;
        if(nums.length==0){
            return -1;
        }
        for(int i=0;i<nums.length-1;i++){
            if(nums[i]>nums[i+1]){
                n = i;
                break;
            }
        }
        if(nums[0]<target){
            return bsearch(nums,0,n,target);
        }else if(nums[0]>target){
            return bsearch(nums,n+1,nums.length-1,target);
        }else {
            return 0;
        }

    }
    public static int bsearch(int nums[],int low,int high,int target){

        while(low<=high){
            int mid = low + (high-low)/2;
            if(nums[mid]>target){
                high = mid - 1;
            }else if(nums[mid]<target){
                low = mid + 1;
            }else {
                return mid;
            }
        }
        return -1;
    }
    public static void main(String[] args){
        int[] arr = {4,5,6,7,0,1,2};

        System.out.println(search(arr,0));
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值