芒果YOLOv5改进08:改进超多种注意力机制,预计30万字(内附改进源代码),原创改进超多种Attention注意力机制和Transformer自注意力机制

这篇博客深入探讨了多种注意力机制,包括SEAttention、ShuffleAttention、Transformer等,结合YOLOv5、YOLOv7、YOLOv8、YOLOX的代码实践,提供了超过30万字的详细内容。作者原创改进了多种注意力机制,并提供了经过验证的源代码,旨在提升YOLO系列模型的检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 💡该内容为《芒果书》📚之目标检测改进系列篇内容,包含YOLO系列+注意力机制 原创改进方式以及源代码🚀

导读必看

  • 💡本篇文章内容:支持 YOLOv5YOLOv6YOLOv7YOLOv8YOLOvX等覆盖主流模型,CSDN芒果汁没有芒果出品
  • 💡重点 包含超多种注意力机制!全篇共计30万字!
  • 💡 重点:🔥🔥🔥有不少同学已经反应有效涨点!!!
  • 💡 《芒果书》改进|超过超多种注意力机制🚀🚀🚀(重点:内附改进源代码,直接一键运行)全篇共计30万字:原创改进超多种Attention注意力机制自注意力机制,高效涨点,打造高效YOLO检测器,适合用来模型改进!
  • 💡 重点:改进源代码已全部通过YOLO系列模型的测试验证,部分注意力机制通过数据集实验验证高效涨点

文章目录

注:

持续更新中: 最新的注意力机制🚀🚀🚀

本篇文章会持续更新, 并进行专栏

### YOLOv8 改进方法及性能提升技巧 #### 添加 SwinTransformer 注意力机制 为了增强模型对于复杂场景的理解能力,在YOLOv8中引入了Swin Transformer作为骨干网络的一部分。这种架构通过自注意力机制能够捕捉图像中的长距离依赖关系,从而显著提高了小物体检测的效果以及整体精度[^1]。 ```python from mmdet.models import build_detector, build_backbone class CustomYOLOv8(YOLOv8): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # 替换默认backbone为带有swin transformer的版本 self.backbone = build_backbone(dict( type='SwinTransformer', embed_dims=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)) ``` #### 双向特征金塔 BiFPN 的应用 传统FPN仅支持单方向的信息传递,而BiFPN则实现了多尺度特征之间的双向融合。这不仅加强了不同层次间信息交流的有效性,还使得低层细节得以更好地保留下来用于最终预测阶段。实验表明该改动可以带来约1%-2% AP值的增长[^2]。 ```python import torch.nn as nn def add_bifpn(self): from mmcv.cnn.bricks import ConvModule layers = [] for i in range(2): # 堆叠两次BiFPN模块 layer = nn.ModuleDict({ f'top_down_{i}': TopDownPath(), f'bottom_up_{i}': BottomUpPath() }) layers.append(layer) return nn.Sequential(*layers) class TopDownPath(nn.Module): ... class BottomUpPath(nn.Module): ... ``` #### 创新性的 Head 设计与 Loss 函数调整 除了上述提到的技术外,《YOLOv8改进有效涨点》专栏还探讨了许多其他方面的优化措施,比如设计更加高效的头部结构(Head),采用更合理的损失函数形式等。这些改变共同作用下可以使模型达到更高的准确率并保持较快的速度表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值