动手学深度学习之微调

微调

  • 标注一个数据集很贵

网络架构

  • 一个神经网络一般可以分为两块
    • 特征抽取将原始像素变成容易线性分割的特征。意思就是将原始的像素变换为很容易分割的线性特征
    • 线性分类器来做分类
      在这里插入图片描述

微调

  • 微调的意思就是在源数据集上,已经训练好了一个模型。假设这个模型确实是按照我们想的来进行的(先做特征提取,然后做分类),那么我们可以认为,我们在你的数据集上面可以进行比较的好的特征提取,那么他在我们的数据集上也可以做一个比较好的特征提取。但是分类器我们不能直接使用。
    在这里插入图片描述

微调中的权重初始化

  • 假设我们在源数据集训练好了一个模型,一般称为Pre-train,然后我们在我们自己的模型我们使用与Pre-train一样的架构的模型,我们模型的初始化不再是随机初始化,我们直接将Pre-train好的参数copy过来使用,这样我们这个模型一开始就可以获得一个还可以的效果。当然最后一层可以随机的初始化
    在这里插入图片描述

训练

  • 是一个目标数据集上的正常训练任务,但使用更强的正则化
    • 使用更小的学习率
    • 使用更少的数据迭代
  • 源数据集远复杂于目标数据,通常微调效果更好

重用分类器权重

  • 源数据集中可能也有目标数据中的部分标号
  • 可以使用预训练好模型分类器中对应标号对应的向量来做初始化

固定一些层

  • 神经网络通畅学习有层次的特征表示
    • 低层次的特征更加通用
    • 高层次的特征则更跟数据集相关
  • 可以固定底部一些层的参数,不参与更新
    • 更强的正则

总结

在这里插入图片描述

代码实现

%matplotlib inline
import os
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

d2l.DATA_HUB['hotdog'] = (d2l.DATA_URL + 'hotdog.zip', 'fba480ffa8aa7e0febbb511d181409f899b9baa5')
data_dir = d2l.download_extract('hotdog')

train_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'))
test_imgs = torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'))
Downloading ../data/hotdog.zip from http://d2l-data.s3-accelerate.amazonaws.com/hotdog.zip...
# 图像的大小和纵横比各有不同
hotdogs = [train_imgs[i][0] for i in range(8)]
not_hotdogs = [train_imgs[-i - 1][0] for i in range(8)]
d2l.show_images(hotdogs + not_hotdogs, 2, 8, scale=1.4);

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aQJJ2npC-1629872905362)(output_3_0.png)]

# 数据增广
# 将RGB的通道
normalize = torchvision.transforms.Normalize([0.485, 0.456, 0.406],
                                             [0.229, 0.224, 0.225])  # 这里就是相当于做了一个批量的归一化,如果我们的网络结构中有就不需要这个

train_augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomResizedCrop(224),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(), normalize])

test_augs = torchvision.transforms.Compose([
    torchvision.transforms.Resize(256),
    torchvision.transforms.CenterCrop(224),
    torchvision.transforms.ToTensor(), normalize])
# 定义和初始化模型
pretrained_net = torchvision.models.resnet18(pretrained=True)  #这一行代码的意思就是 
pretrained_net.fc  # fc的意思就是fully connect也就是全连接,也就是最后一层
Downloading: "https://download.pytorch.org/models/resnet18-f37072fd.pth" to /Users/tiger/.cache/torch/hub/checkpoints/resnet18-f37072fd.pth
100.0%





Linear(in_features=512, out_features=1000, bias=True)
finetune_net = torchvision.models.resnet18(pretrained=True)  # 这里和前面一样将我们模型下载下来
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)  # 这里就是将最后fully connect层随机初始化为一个线性层,input为512,输出为2
nn.init.xavier_normal_(finetune_net.fc.weight);  # 这里对上面的fully connect层的参数做了一个随机初始化
# 模型微调
def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5,
                      param_group=True):
    train_iter = torch.utils.data.DataLoader(
        torchvision.datasets.ImageFolder(os.path.join(data_dir, 'train'),
                                         transform=train_augs),
        batch_size=batch_size, shuffle=True)
    test_iter = torch.utils.data.DataLoader(
        torchvision.datasets.ImageFolder(os.path.join(data_dir, 'test'),
                                         transform=test_augs),
        batch_size=batch_size)
    devices = d2l.try_all_gpus()
    loss = nn.CrossEntropyLoss(reduction="none")
    if param_group:
        params_1x = [
            param for name, param in net.named_parameters()
            if name not in ["fc.weight", "fc.bias"]]  # 这里将不是最后一层的所有层的参数都都拿出来
        trainer = torch.optim.SGD([{
            'params': params_1x}, {  # 这里表示不是最后一层的参数,学习率使用默认的学习率
                'params': net.fc.parameters(),  # 最后一层的参数,最后一层的学习率使用的是10倍
                'lr': learning_rate * 10}], lr=learning_rate,  
                                  weight_decay=0.001)
    else:
        trainer = torch.optim.SGD(net.parameters(), lr=learning_rate,
                                  weight_decay=0.001)
    d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
                   devices)
# 使用较小的学习率
train_fine_tuning(finetune_net, 5e-5)  # finetune_net就是我们之前定义的最后一层是随机的,其他的层都是我们copy的参数
# 不用pretrain
scratch_net = torchvision.models.resnet18()  # 这里就是将模型结构拷贝过来,所有的参数都是随机初始化的
scratch_net.fc = nn.Linear(scratch_net.fc.in_features, 2)
train_fine_tuning(scratch_net, 5e-4, param_group=False)
<think>嗯,用户想了解深度学习的入门教程,特别是动手实践的部分。首先,我需要回顾系统级指令,确保回答格式正确,比如数学表达式用$...$,独立公式用$$...$$,还要生成相关问题。用户提到了几个引用来源,需要合理引用。 用户的需求是寻找深度学习入门教程,尤其是动手实践的资源。根据引用[1]提到的《动手学深度学习》PyTorch版,这是一个很好的起点,因为它强调实践,适合初学者。可能需要详细介绍一下这本书的特点,比如Jupyter笔记本和在线社区,这样用户知道资源是易用且互动的。 接下来,引用[2]提到的基础知识学习路径,可以补充理论部分。用户可能需要平衡理论实践,所以建议他们先掌握基础概念,再通过项目巩固。这里需要分步骤说明,比如数学基础、编程基础,然后选择框架,逐步深入。 然后,引用[3]提到的2023年指南和RLHF,可能用户对最新技术感兴趣,可以提到保持更新和参社区,比如Kaggle。此外,推荐实战项目,如图像分类或NLP,帮助用户应用所学知识。 需要注意回答的结构,先推荐教程,再分步骤学习路径,最后实战建议。同时,生成的相关问题要围绕入门方法、数学要求、框架选择、项目推荐和最新趋势,这样用户可以有后续探索的方向。 最后,检查格式是否正确,行内数学表达式是否用$...$,独立公式是否单独成段,引用标识是否自然添加。确保回答清晰,步骤明确,引用恰当,帮助用户有效入门深度学习。</think>### 深度学习入门实践教程推荐 #### 1. 《动手学深度学习》(PyTorch版) 此教程基于经典教材《Dive into Deep Learning》改编,特别强调代码实践理论结合。特点包括: - 所有案例使用PyTorch框架实现,可直接在Jupyter笔记本中运行 - 提供在线交互式环境(如Colab链接),无需本地配置 - 配套视频讲解和开源社区支持[^1] 示例代码片段(线性回归实现): ```python import torch def linreg(X, w, b): return torch.matmul(X, w) + b # 矩阵乘法实现前向传播 ``` #### 2. 分步骤学习路径 1. **基础准备** - 数学基础:掌握$f(x)=Wx+b$等线性代数表达式,理解梯度下降法$\theta_{t+1} = \theta_t - \eta \nabla_\theta J(\theta)$ - 编程基础:Python语法NumPy库操作 2. **框架选择** $$ \text{框架选择建议} = \begin{cases} \text{PyTorch} & \text{研究导向} \\ \text{TensorFlow} & \text{生产部署} \end{cases} $$ 3. **实战进阶** - 计算机视觉:实现ResNet进行图像分类 - 自然语言处理:构建LSTM文本生成模型 - 强化学习:结合人类反馈的RLHF方法[^3] #### 3. 最新学习建议 2023年推荐结合大模型实践,例如: - 使用Hugging Face库微调训练模型 - 参Kaggle入门竞赛(如Digit Recognizer) - 关注AI社区最新论文复现项目
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值