Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
Example:
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
本题和378题略有不同,本题要找到特定值,378题是要找第k小的值
method 1
对每行使用二分查找
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int rows = matrix.size(), cols = matrix[0].size();
bool ans = false;
for (int i = 0; i < rows; i++)
{
if (matrix[i][0] > target) break;
if (matrix[i][cols - 1] < target) continue;
int low = 0, high = cols - 1;
while (low < high){
int mid = (low + high) / 2;
if (matrix[i][mid] == target) return true;
if (matrix[i][mid] > target) high = mid - 1;
if (matrix[i][mid] < target) low = mid + 1;
}
if (matrix[i][low] == target) return true;
}
return ans;
}
method 2
对于此类矩阵,很容易考虑从右上角开始遍历,可以减少遍历量。当数不符合要求时,可以直接排除一行/一列。
bool searchMatrix2(vector<vector<int>>& matrix, int target) {
int m = matrix.size();
if (m == 0) return false;
int n = matrix[0].size();
int i = 0, j = n - 1;
while (i < m && j >= 0) {
if (matrix[i][j] == target)
return true;
else if (matrix[i][j] > target) {
j--;
}
else
i++;
}
return false;
}
method 3 divide and conquer
使用分治法,或者可以理解为二分查找
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
if(m<1) return false;
int n = matrix[0].length;
return searchMatrix(matrix, new int[]{0,0}, new int[]{m-1, n-1}, target);
}
private boolean searchMatrix(int[][] matrix, int[] upperLeft, int[] lowerRight, int target) {
if(upperLeft[0]>lowerRight[0] || upperLeft[1]>lowerRight[1]
|| lowerRight[0]>=matrix.length || lowerRight[1]>=matrix[0].length)
return false;
if(lowerRight[0]-upperLeft[0]==0 && lowerRight[1]-upperLeft[1]==0)
return matrix[upperLeft[0]][upperLeft[1]] == target;
int rowMid = (upperLeft[0] + lowerRight[0]) >> 1;
int colMid = (upperLeft[1] + lowerRight[1]) >> 1;
int diff = matrix[rowMid][colMid] - target;
if(diff > 0) {
return searchMatrix(matrix, upperLeft, new int[]{rowMid, colMid}, target)
|| searchMatrix(matrix, new int[]{upperLeft[0],colMid+1}, new int[]{rowMid, lowerRight[1]}, target)
|| searchMatrix(matrix, new int[]{rowMid+1,upperLeft[1]}, new int[]{lowerRight[0], colMid}, target);
}
else if(diff < 0) {
return searchMatrix(matrix, new int[]{upperLeft[0], colMid+1}, new int[]{rowMid, lowerRight[1]}, target)
|| searchMatrix(matrix, new int[]{rowMid+1, upperLeft[1]}, new int[]{lowerRight[0], colMid}, target)
|| searchMatrix(matrix, new int[]{rowMid+1, colMid+1}, lowerRight, target);
}
else return true;
}
summary
- 对于此类矩阵,通过右上角开始搜索,可以一次排除一列/一行
- 使用分治法,将在大矩阵中的搜索转化为对小矩阵的搜索