Leetcode 240. Search a 2D Matrix II

本文介绍了一种在有序矩阵中高效搜索特定值的算法。通过三种方法:逐行二分查找、从右上角开始遍历以及分治法,详细阐述了如何在满足行和列升序排列的矩阵中定位目标值。方法2从右上角开始,每次排除一行或一列,大幅减少了搜索范围;方法3使用分治策略,将大矩阵搜索问题转化为小矩阵的递归问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
Example:

Consider the following matrix:

[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.

Given target = 20, return false.

本题和378题略有不同,本题要找到特定值,378题是要找第k小的值

method 1

对每行使用二分查找

bool searchMatrix(vector<vector<int>>& matrix, int target) {
	int rows = matrix.size(), cols = matrix[0].size();

	bool ans = false;
	for (int i = 0; i < rows; i++)
	{
		if (matrix[i][0] > target) break;
		if (matrix[i][cols - 1] < target) continue;
		
		int low = 0, high = cols - 1;
		while (low < high){
			int mid = (low + high) / 2;
			if (matrix[i][mid] == target) return true;
			if (matrix[i][mid] > target) high = mid - 1;
			if (matrix[i][mid] < target) low = mid + 1;
		}

		if (matrix[i][low] == target) return true;

	}

	return ans;
}

method 2

对于此类矩阵,很容易考虑从右上角开始遍历,可以减少遍历量。当数不符合要求时,可以直接排除一行/一列。

bool searchMatrix2(vector<vector<int>>& matrix, int target) {
	int m = matrix.size();
	if (m == 0) return false;
	int n = matrix[0].size();

	int i = 0, j = n - 1;
	while (i < m && j >= 0) {
		if (matrix[i][j] == target)
			return true;
		else if (matrix[i][j] > target) {
			j--;
		}
		else
			i++;
	}
	return false;
}

method 3 divide and conquer

使用分治法,或者可以理解为二分查找

public boolean searchMatrix(int[][] matrix, int target) {
    int m = matrix.length;
    if(m<1) return false;
    int n = matrix[0].length;
    
    return searchMatrix(matrix, new int[]{0,0}, new int[]{m-1, n-1}, target);
}

private boolean searchMatrix(int[][] matrix, int[] upperLeft, int[] lowerRight, int target) {
	if(upperLeft[0]>lowerRight[0] || upperLeft[1]>lowerRight[1]
			|| lowerRight[0]>=matrix.length || lowerRight[1]>=matrix[0].length) 
		return false;
	if(lowerRight[0]-upperLeft[0]==0 && lowerRight[1]-upperLeft[1]==0)
		return matrix[upperLeft[0]][upperLeft[1]] == target;
	int rowMid = (upperLeft[0] + lowerRight[0]) >> 1;
	int colMid = (upperLeft[1] + lowerRight[1]) >> 1;
	int diff = matrix[rowMid][colMid] - target;
	if(diff > 0) {
		return searchMatrix(matrix, upperLeft, new int[]{rowMid, colMid}, target)
				|| searchMatrix(matrix, new int[]{upperLeft[0],colMid+1}, new int[]{rowMid, lowerRight[1]}, target)
				|| searchMatrix(matrix, new int[]{rowMid+1,upperLeft[1]}, new int[]{lowerRight[0], colMid}, target);
	}
	else if(diff < 0) {
 		return searchMatrix(matrix, new int[]{upperLeft[0], colMid+1}, new int[]{rowMid, lowerRight[1]}, target)
				|| searchMatrix(matrix, new int[]{rowMid+1, upperLeft[1]}, new int[]{lowerRight[0], colMid}, target)
				|| searchMatrix(matrix, new int[]{rowMid+1, colMid+1}, lowerRight, target);
	}
	else return true;
}

summary

  1. 对于此类矩阵,通过右上角开始搜索,可以一次排除一列/一行
  2. 使用分治法,将在大矩阵中的搜索转化为对小矩阵的搜索
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值