题目描述
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
[
[1, 3, 5, 7 ],
[10, 11, 16, 20],
[23, 30, 34, 60]
]
实现
-
有些不同,但这种方法也可以解:
J - 04】二维数组中的查找 -
二分的复杂度
时间复杂度:O(logmn),其中 m 和 n 分别是矩阵的行数和列数。
空间复杂度:O(1)。
注意的是,若二维数组中的一维数组的元素个数不一,方法二将会失效
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int m = matrix.length;
int n = matrix[0].length;
int low = 0;
int high = m * n - 1;
while (low <= high) { // <=
int mid = (high - low) / 2 + low;
int x = matrix[mid / n][mid % n];
if (x == target) {
return true;
} else if (x > target) {
high = mid - 1;
} else {
low = mid + 1;
}
}
return false;
}