【Java - L - 0074】m - 搜索二维矩阵

本文介绍了一种用于判断给定mxn矩阵中是否存在特定目标值的高效算法,利用二分查找策略,时间复杂度为O(logmn),空间复杂度为O(1),适用于具有特定升序排列特性的矩阵查找问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。

[
  [1,    3,   5,  7 ],
  [10,  11,  16,  20],
  [23,  30,  34,  60]
]

lc练习

实现
  • 有些不同,但这种方法也可以解:
    J - 04】二维数组中的查找

  • 二分的复杂度
    时间复杂度:O(logmn),其中 m 和 n 分别是矩阵的行数和列数。
    空间复杂度:O(1)。
    注意的是,若二维数组中的一维数组的元素个数不一,方法二将会失效

    public boolean searchMatrix(int[][] matrix, int target) {
        if (matrix.length == 0 || matrix[0].length == 0) {
            return false;
        }
        int m = matrix.length;
        int n = matrix[0].length;
        int low = 0;
        int high = m * n - 1;

        while (low <= high) { // <=
            int mid = (high - low) / 2 + low;
            int x = matrix[mid / n][mid % n];
            if (x == target) {
                return true;
            } else if (x > target) {
                high = mid - 1;
            } else {
                low = mid + 1;
            }
        }
        return false;

    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值