n_gram算法词共现矩阵 python实现

本文介绍了如何使用Python实现n_gram算法,通过该算法生成词共现矩阵,以进行文本分析。文中展示了具体的代码实现,帮助读者理解这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看下结果:

 

代码

import pandas as pd
def gx_matrix(vol_li):
    # 整合一下,输入是df列,输出直接是矩阵
    names = locals()
    all_col0 = []   # 用来后续求所有字段的集合
    for row in vol_li:
        all_col0 += row
        for each in row:  # 对每行的元素进行处理,存在该字段字典的话,再进行后续判断,否则创造该字段字典
            try:
                 for each1 in row:  # 对已存在字典,循环该行每个元素,存在则在已有次数上加一,第一次出现创建键值对“字段:1”
                    try:
                           names['dic_' + each][each1] = names['dic_' + each][each1] + 1  # 尝试,一起出现过的话,直接加1
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值