基于python实现模式识别 K-means、Fuzzy C-means 附完整代码

本文介绍了使用Python实现K-means和Fuzzy C-means聚类算法,详细阐述了算法原理,并在Iris和Sonar数据集上进行了实验,分析了聚类结果和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。这种基于相似度度量的聚类方法也是实际中更常用的方法,其中,根据算法设计的不同又可分为动态聚类法和分级聚类法等。

动态聚类方法是一种普遍采用的方法,它具有以下 3 个要点:

① 选定某种距离度量作为样本间的相似度度量。

② 确定某个评价聚类结果质量的准则函数。

③ 给定某个初始分类,然后用迭代算法找出使准则函数取极值的最好聚类结果。

1.2 K 均值算法(K-means)

(1)算法原理

K均值(K-means)算法是一种很常用的聚类算法,其基本思想是,通过迭代寻找k个聚

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值