import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, models
from PIL import Image
import copy
# ---- 设置设备 ----
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ---- 加载和预处理图像 ----
def image_loader(image_name, imsize):
loader = transforms.Compose([
transforms.Resize(imsize),
transforms.ToTensor()
])
image = Image.open(image_name)
image = loader(image).unsqueeze(0)
return image.to(device, torch.float)
# ---- 定义内容损失 ----
class ContentLoss(nn.Module):
def __init__(self, target):
super(ContentLoss, self).__init__()
self.target = target.detach()
def forward(self, x):
self.loss = nn.functional.mse_loss(x, self.target)
return x
# ---- 定义风格损失 ----
def gram_matrix(input):
a, b, c, d = input.size() # a=batch_size(=1)
features = input.view(a * b, c * d)
G = torch.mm(features, features.t())
return G.div(a * b * c * d)
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, x):
G = gram_matrix(x)
self.loss = nn.functional.mse_loss(G, self.target)
return x
# ---- 加载模型 ----
cnn = models.vgg19(pretrained=True).features.to(device).eval()
# ---- 设置图像路径 ----
content_img = image_loader("content.jpg", imsize=512)
style_img = image_loader("style.jpg", imsize=512)
input_img = content_img.clone()
# ---- 损失层添加位置 ----
content_layers = ['conv_4']
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
# ---- 创建模型并插入损失模块 ----
cnn = copy.deepcopy(cnn)
content_losses = []
style_losses = []
model = nn.Sequential()
i = 0
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
continue
model.add_module(name, layer)
if name in content_layers:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
target = model(style_img).detach()
style_loss = StyleLoss(target)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
# ---- 优化器 ----
optimizer = optim.LBFGS([input_img.requires_grad_()])
# ---- 风格迁移循环 ----
num_steps = 300
style_weight = 1e6
content_weight = 1
run = [0]
while run[0] <= num_steps:
def closure():
optimizer.zero_grad()
model(input_img)
style_score = sum(sl.loss for sl in style_losses)
content_score = sum(cl.loss for cl in content_losses)
loss = style_weight * style_score + content_weight * content_score
loss.backward()
if run[0] % 50 == 0:
print(f"Step {run[0]}: Style Loss: {style_score.item():4f}, Content Loss: {content_score.item():4f}")
run[0] += 1
return loss
optimizer.step(closure)
# ---- 保存输出结果 ----
output = input_img.cpu().clone().squeeze(0)
output = transforms.ToPILImage()(output.clamp(0, 1))
output.save("result.jpg")
print("✅ 风格迁移完成,结果保存在 result.jpg")