Numpy 排序搜索计数与集合操作

本文详细介绍了NumPy库中用于数组排序、搜索、计数和集合操作的方法,包括numpy.sort、numpy.argsort、numpy.lexsort、numpy.partition、numpy.argpartition等排序函数,以及numpy.argmax、numpy.argmin、numpy.nonzero、numpy.where、numpy.searchsorted等搜索工具。此外,还涵盖了numpy.count_nonzero、numpy.unique等计数和集合操作,如交集、并集、差集和异或集的计算。这些方法在数据分析和科学计算中扮演着重要角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

排序

  • numpy.sort(a[, axis=-1, kind=‘quicksort’, order=None])
  • numpy.argsort(a[, axis=-1, kind=‘quicksort’, order=None])
  • numpy.lexsort(keys[, axis=-1])
  • numpy.partition(a, kth, axis=-1, kind=‘introselect’, order=None)
  • numpy.argpartition(a, kth, axis=-1, kind=‘introselect’, order=None)

搜索

  • numpy.argmax(a[, axis=None, out=None])
  • numpy.argmin(a[, axis=None, out=None])
  • numppy.nonzero(a)
  • numpy.where(condition, [x=None, y=None])
  • numpy.searchsorted(a, v[, side=‘left’, sorter=None])

计数

  • numpy.count_nonzero(a, axis=None)

集合操作

构造集合
  • numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)
布尔运算
  • numpy.in1d(ar1, ar2, assume_unique=False, invert=False) T
  • numpy.intersect1d(ar1, ar2, assume_unique=False, return_indices=False)
  • numpy.union1d(ar1, ar2)
  • numpy.setdiff1d(ar1, ar2, assume_unique=False)
异或
  • setxor1d(ar1, ar2, assume_unique=False)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值