边缘计算(认识)

边缘计算

边缘计算

1、什么是边缘计算

国家标准化管理委员会的领导更是将“边缘计算”定义为——“在网络边缘侧实现智能互联”的一种计算模式。

“边缘计算”是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务。这说明,要想实现“边缘计算”这个概念,首先应该满足三个因素——边缘、计算和智能。

“边缘”也就是“端”所在的物理区域。“边缘计算”也特别强调计算的作用。

当你每次用银行卡支付一杯卡布奇诺,在途中参与电话会议,或者访问流媒体来放松一下,以上这些情境能够轻松实现,都得益于边缘计算的发展,这也是IT发展的一个趋势。
边缘计算的目标无论是加速向远程用户交付应用程序和内容,还是从远程站点收集数据,都使得边缘站点的数量和重要性在不断增长。它们的范围包括区域数据中心、小型机房到通讯中心,到零售商店,学校建筑,政府机构和工业场所的物联网。

边缘计算源于工业领域,主要部署在终端设备或者网络节点上,旨在帮助工业生产中的设备,在数据不上传云端的情况下,也能够具有近端的决策控制力。

边缘计算”源自工业领域,主要部署在终端设备或网络接入点上。目前已经普遍存在于工业物联网(嵌入式物联网)应用、制造业、零售、ATM机、智能手机和虚拟/混合现实等领域。边缘计算使得工业生产中的设备,无需云计算的帮助,也能具有近端的决策控制能力。

2、边缘计算的结构模型:

边缘计算联盟ECC针对边缘计算,定义了四个领域:设备域(感知与控制层)、网络域(连接和网络层)、数据域(存储和服务层)、应用域(业务和智能层)。这四个“层域”就是边缘计算的计算对象。
设备域:边缘计算在这一层,可以对感知的信息直接进行计算处理。比如在视频采集、音频采集中直接部署智能鉴别的能力;又或者像手机一样,能够由语音输入直接转换成文字输出。
网络域:通过部署计算能力,实现各网络协议的自动转换,对数据格式进行标准化处理。要解决物理网中数据异构的问题,就需要在网络域中部署边缘计算,以实现数据格式的标准化和数据传递的标准化(例如将所有的感知数据都换算成MQTT类型数据,并通过HTTP方式传递)。同时,网络域的边缘计算,还能对“融合网络”进行智能化管理,实现网络的冗余,保证网络的安全,并可进一步参与网络的优化工作。
数据域:边缘计算,使得数据管理更智能、存储方式更灵活。首先,边缘计算可以对数据的完整性和一致性进行分析,并进行数据清洗工作,消灭系统中的“脏”数据。其次,边缘计算可以对计算和存储能力以及系统负载进行动态地部署。***,边缘计算还能和云端计算保持高效协同、合理分担运算任务。
应用域:边缘计算提供属地化的业务逻辑和应用智能。它使得应用具有灵便、快速反应的能力,并在离线的情况下(和云端失去联系时),仍能够独立地提供本地化的应用服务。
在物联网贴近用户和应用场景的地方,边缘计算被部署在以上4个层域中。它使得设备具有智能化的感知能力,装配自适应的连接策略和(数字)部署策略,解决系统中的数据异构问题,并提供局部的业务逻辑甚至智能。

3、边缘计算与云计算 边缘智能

边缘计算本质就是“贴地”的云计算。边缘计算最重要的能力就是继承云计算的智能。就目前的技术发展趋势来看,理论上已经能做到这一点。针对某一种应用,神经网络算法(云计算)在学习了足够多的应用场景后,可先进行“瘦身”(精简),再部署在网络边缘(部署具有智能的边缘计算),从而形成了边缘智能。这样,即使脱离云计算的支撑,边缘智能也能够实现该应用场景的大部分智能。
例如,2017年5月23日,人工智能AlphaGo执白1/4子战胜了柯洁。这其中值得注意的是,那天出战的是“一只”单机版的AlphaGo。
当边缘计算成为边缘智能,可使得局域、边缘的物联网系统具备自治自律的行为能力。自给自足的算力和智能,将使得物联网应用可以摆脱“云计算”而相对独立地运营。
边缘计算,是智能化云计算的落地部署。应用在物联网局部实现了信息成环,并能够通过边缘计算,实现信息决策、行为反馈、自动组网、负载平衡等全层域的智能化。在脱离云计算的情况下,应用也能够独立地、灵活地运行,从而在应用场景的小范围内形成物联网“生态”(各种类设备之间,形成信息互助服务的机制)。

4、算力

计算能力
在这里插入图片描述

在这里插入图片描述

<think>嗯,用户想了解边缘计算是什么。首先,我需要从基本概念入手,解释边缘计算定义边缘计算涉及到数据处理的位置,不同于传统的云计算,所以需要强调其核心特点:靠近数据源。 接下来,得说明边缘计算云计算的区别。用户可能知道云计算,但不太清楚两者的差异,需要对比分析,比如延迟、带宽、数据隐私等方面。这样能帮助用户理解为什么边缘计算被提出。 然后,应该列举边缘计算的关键技术,比如分布式架构、边缘节点、边缘服务器等。这部分需要具体一些,但不用太深入技术细节,保持通俗易懂。 应用场景也很重要。用户可能想知道边缘计算用在哪些地方,比如物联网、自动驾驶、智能城市。举实际例子会让解释更生动,比如工厂里的实时监控,自动驾驶汽车的反应速度提升。 挑战问题部分也不能少。任何技术都有优缺点,边缘计算在安全性、资源管理、标准化方面的挑战需要提及,这样回答更全面客观。 最后,总结边缘计算的意义未来发展方向,让用户有一个整体的认识。过程中要确保使用正确的中文术语,结构清晰,分点说明,避免使用复杂术语,保持口语化但专业。 需要检查是否符合系统级指令:数学公式是否正确使用$...$,独立公式用$$...$$。不过用户的问题不涉及数学公式,所以可能不需要用到。但如果有例子涉及计算,比如延迟公式,可能需要用LaTeX,比如延迟$t = \frac{d}{v}$。不过当前问题可能不需要,所以暂时不考虑。 确保回答分步骤,结构清晰,用中文,没有使用Markdown格式。现在组织这些思考点,形成一个连贯的回答。</think>边缘计算是一种将数据处理分析功能从传统的云端下沉到网络边缘(靠近数据源)的计算模式。其核心目标是**减少延迟、节省带宽、提升数据隐私性**,并更好地支持实时性要求高的应用。下面逐步介绍其核心概念、技术特点应用场景: --- ### 一、核心概念 1. **“边缘”的定义** 边缘指的是靠近数据生成位置的设备或节点,例如: - 终端设备:手机、传感器、摄像头等。 - 边缘网关:工厂中的智能路由器、基站等。 - 边缘服务器:部署在本地的小型数据中心。 2. **云计算的区别** - **云计算**:数据需传输到远端数据中心处理,适合非实时、大规模计算。 - **边缘计算**:数据在本地或近端处理,仅将必要结果上传云端,适合实时响应低延迟场景。 --- ### 二、关键技术特点 1. **低延迟** 直接在边缘处理数据,避免网络传输延迟。例如:自动驾驶汽车需在毫秒级响应路况,若依赖云端可能引发事故。 2. **带宽优化** 仅上传关键数据(如异常告警),而非原始数据(如持续视频流)。例如:智能摄像头仅上传可疑片段,而非24小时录像。 3. **数据隐私** 敏感数据(如医疗影像)可在本地处理,避免上传云端泄露风险。 4. **分布式架构** 边缘节点之间可协作,形成去中心化的计算网络。 --- ### 三、典型应用场景 1. **物联网(IoT)** - 工厂设备实时监控:边缘节点分析传感器数据,及时预测故障。 - 智慧农业:农田传感器直接控制灌溉,无需依赖云端指令。 2. **自动驾驶** 车辆通过边缘计算快速处理雷达、摄像头数据,实现避障、路径规划。 3. **增强现实(AR)** 本地处理用户动作场景数据,减少AR眼镜的眩晕感。 4. **智能城市** 交通信号灯根据路口车流实时调整配时,而非等待云端调度。 --- ### 四、挑战问题 1. **安全性** 边缘设备分散,易受物理攻击或恶意入侵。 2. **资源限制** 边缘节点计算能力存储空间有限,需优化算法。 3. **标准化** 不同厂商设备间的兼容性协议统一仍需推进。 --- ### 五、总结 边缘计算通过将计算能力下沉到网络边缘,弥补了云计算的延迟带宽缺陷,是支撑5G、物联网等技术的核心基础设施。未来,随着边缘设备性能提升AI算法轻量化,其应用将进一步扩展到医疗、能源等领
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

椒椒。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值