索引的设计原则有哪些

本文探讨了数据库索引设计的重要原则,强调不是索引越多越好。适合建立索引的列是出现在WHERE子句和JOIN操作中的列,基数较小的列效果差,不应创建索引。选择索引列时应尽量短,避免为频繁更新的字段和大文本创建索引,同时创建的索引列数量不宜过多,推荐2~3个列的组合索引。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为什么需要索引?因为索引是用来加快数据访问的,如果你的数据索引设计得不合适的话,或设计得不合理的话,会极大程度上影响我们的性能。注意一点,并不是说索引越多,效率越高。

在进行索引设计的时候,应该保证索引字段占用的空间越小越好,这只是一个大方向,还有一些细节需要注意:

适合所有的列是出现在 where 子句中的列,或者说连接子句中指定的列。也就是我们在进行查询的时候,你在建索引时,并不是所有列都可以随便建索引,只有当做条件查询的时候,那个列当成索引才是最合适的。包括你在进行 join 操作的时候,那个关联列以及 order by 排序的时候,那个列在创建的索引,这个时候才能极大程度上提高我们的数据访问的一个效率。其他没有条件,你这时候建一个索引,没有任何意义,所以不要乱建索引。

基数比较小的表索,引效果差,没必要创建索引。它表示当前这个列里面的唯一值,如果一个表里面有一个状列叫状态列,只有 1,2,3,4 个状态。那意味着你这个表里面不管有多少行记录,你的这个值对应的都是 1,2,3,4。这个时候你想,如果你创建了索引,你按照 1,2,3,4 在进行数据查找的时候,找到都是相同的重复记录。那它能加快你整个数据的查询访问吗?是不是可以的?所以基数越小到表好,索引效果越差,没必要去创建索引,最好是每个值跟每个值都是不重复的。这个时候你创建索引效率是最高的。

在选择索引列的时候越短越好,可以指定某些列的一部分,没必要用全部字段。也就是我们在创建索引的时候,因为 B+ 树这种数据结构的一个特点,要求你在存储索引的时候,那个 Key 列的值越小越好,或者占用的空间越小越好。因为你占用的空间越小,表示你每一个块上面或者页上面能存储更多的数据范围,也就是你能存储更多的数据。这个时候很明显,Key 越小越好。而且如果有时候你写的一个字段是 varchar 类型,长度 20。如果你把 20 个长度都去当做索引了,很明显会占用大量空间,此时我们截取这二十里面的前 5 个或者前 7 个来当作索引,这个时候也是能够进行索引的一个检索的。

不要给表中的每一个字段都创建索引,并不是索引越多越好。你索引越多,你占用的磁盘空间越大,占用的磁盘空间越大。有可能你在进行检索的时候,会导致你的 IO 量就越大,这时候反而会起到一个坏效果,

定义有外界的数据链,一定要创建索引。如果你的业务查询非常复杂,需要进行 n 多个表的表关联。这个时候你的关联操作是非非常麻烦的。因此最好给这些相对应的关联列上面创建的索引,它能够定向的指定到某一行记录,然后进行关联,而不需要每个挨个匹配。

更新频繁的字段不要有索引。这点涉及的是是一个索引维护的问题。我们的索引并不是创建之后就不动了,有可能你需要对索引的值进行修改。一旦你对索引值进行修改了,看起来只是改了一行记录,但是内部里面有可能其他的索引也会引用这个值。那么引发的这个维护的点会非常多,会导致我们的效率降低。所以不要去在频繁更新的字段上面创建我们的索引。

创建索引列不要太多,可以创建组合索引,但是不建议太多。我们在创建索引的时候,一般情况下都是单列的。但是在很多极特殊的情况下,可能要把多个列共同变成一个索引。如果你在创建组合索引的时候,你的字段如果超过 5 个,你的查询效率也会一也会降低。因为在组合索引里面进行数据的一个匹配或者查找的时候,是遵循一个最左匹配原则的。它必须要先匹配第 1 个,再匹配第 2 个,再匹配第 3 个,再匹配第4个,必须要以这样的方式来来创建或者来匹配。那如果你的列更多,那意着越往后的字段必备匹配到的可能性越小。那你后面那些列其实没多大意义了,因此不建议太多, 2~3 个最多了,超过 5 个这种情况千万不要有。

大文本,大对象不要创建索引。比如 text 这样对象千万不要见索引。因为它本身文本内容就占用了很大的空间。你在创建索引,又会额外增加很多的空间,会导致你索引的数据量变得非常小。底层是用 B+ 树,当你的这个字段非常大的时候,会导致你的树变高,而不是变胖。变高之后会增加我们的 IO 次数,影响我们整体系统的一个性能,所以像这些大对象千万不要建索引。

<think>我们之前讨论了前缀索引设计原则,现在用户询问的是更广泛的数据库索引设计基本原则。根据引用[1]中的关键观点:"创建高效索引最重要的原则是根据您的工作负载而不是表结构创建索引",我们可以围绕这个核心展开。 数据库索引设计的基本原则包括: 1. **工作负载驱动原则**:索引设计必须基于实际查询需求(工作负载),而非表结构。需要分析高频查询、关键路径查询(如性能瓶颈查询)和慢查询[^1]。 2. **选择性原则**:优先为高选择性的创建索引(即中不同值多、重复值少)。选择性计算公式:$ \text{selectivity} = \frac{\text{COUNT(DISTINCT column)}}{\text{COUNT(*)}} $,值越接近1越好。 3. **最左前缀原则**:对于复合索引$(col1, col2, col3)$,索引可优化以下查询: - `WHERE col1 = ?` - `WHERE col1 = ? AND col2 = ?` - `WHERE col1 = ? AND col2 = ? AND col3 = ?` 但无法优化跳过左侧的查询(如`WHERE col2 = ?`)[^2]。 4. **覆盖索引原则**:若索引包含查询所需的所有字段(即覆盖查询),可避免回表查询。例如: ```sql -- 创建覆盖索引 CREATE INDEX idx_covering ON orders (order_date, product_id, quantity); -- 查询可被索引完全覆盖 SELECT order_date, product_id FROM orders WHERE quantity > 10; ``` 5. **精简索引原则**: - 用复合索引替代多个单索引(减少索引数量) - 避免冗余索引(如已有$(a,b)$索引后不再创建$(a)$索引) - 限制索引数(通常不超过5) 6. **写开销权衡**:索引会降低写操作(INSERT/UPDATE/DELETE)速度。表更新时,所有相关索引都需维护。建议: - 写密集表:索引数不超过3个 - 读密集表:可适当增加 7. **数据类型优化**: - 整型索引效率高于字符串 - 避免对过长大字段建索引(可用前缀索引) - 枚举值少的(如性别)通常不需要索引 8. **监控与调整**:定期使用数据库分析工具(如MySQL的`EXPLAIN`、`SHOW INDEX`)评估索引效率,删除无用索引。 ### 索引设计工作流程 ```mermaid graph TD A[收集工作负载] --> B[识别高频查询] B --> C[分析查询条件与排序字段] C --> D[计算字段选择性] D --> E[设计复合索引结构] E --> F[验证索引覆盖] F --> G[测试查询性能] G --> H{是否达标?} H -->|是| I[部署索引] H -->|否| C ``` ### 常见误区 | 误区 | 正确做法 | |------|----------| | 为所有单独建索引 | 用复合索引替代 | | 索引越多越好 | 读写平衡,删除冗余索引 | | 忽略排序和分组需求 | 将`ORDER BY`/`GROUP BY`字段加入索引 | §§相关问题§§ 1. 如何识别数据库中的冗余索引? 2. 复合索引的顺序如何选择? 3. 什么情况下索引会失效?</think>### 数据库索引设计基本原则 #### 1. **工作负载驱动原则**(核心原则) 索引设计必须基于**实际查询需求**而非表结构。需要: - 分析高频查询(尤其是 WHERE/JOIN/ORDER BY 子句) - 识别慢查询(通过数据库性能监控工具) - 优先优化关键业务路径的查询 [^1] *示例:电商系统优先为`订单状态+用户ID`创建索引,而非所有日期字段* #### 2. **选择性原则** 索引应具备**高区分度**: $$ \text{选择性} = \frac{\text{COUNT(DISTINCT column)}}{\text{COUNT(*)}} $$ - 值越接近 1 越好(如用户ID) - 低于 0.1 的避免单独建索引(如性别) - 复合索引优先选择高区分度在前 #### 3. **最左前缀匹配原则** 复合索引$(col1, col2, col3)$**仅对以下查询有效**: - `WHERE col1 = ?` - `WHERE col1 = ? AND col2 = ?` - `WHERE col1 = ? AND col2 = ? AND col3 = ?` 但无法优化:`WHERE col2 = ?` 或 `WHERE col3 = ?` [^2] #### 4. **覆盖索引原则** 索引应包含查询所需**所有字段**,避免回表: ```sql -- 创建覆盖索引 CREATE INDEX idx_covering ON orders (order_date, customer_id, amount); -- 查询可完全使用索引 SELECT order_date, amount FROM orders WHERE customer_id = 100 AND order_date > '2023-01-01'; ``` #### 5. **精简索引原则** - 用 1 个复合索引替代多个单索引 - 删除未使用的索引(定期检查`sys.schema_unused_indexes`) - 避免冗余索引(如已有$(a,b)$索引后不再创建$(a)$索引) #### 6. **写开销权衡原则** 索引会降低写操作性能: - INSERT/UPDATE/DELETE 需更新所有相关索引 - **建议阈值**: - 写密集表:索引 ≤ 3 个 - 读密集表:索引 ≤ 5 个 #### 7. **数据类型优化原则** - 整型索引效率 > 字符串索引 - 避免对大文本建索引(改用前缀索引或全文索引) - 使用 ENUM 替代低区分度字符串 #### 8. **监控调整原则** 持续优化: ```sql -- MySQL 查看索引使用情况 SHOW INDEX FROM table_name; SELECT * FROM sys.schema_index_statistics; -- PostgreSQL SELECT * FROM pg_stat_user_indexes; ``` ### 索引设计决策流程图 ```mermaid graph TD A[分析工作负载] --> B{是否有高频查询?} B -->|是| C[识别 WHERE/JOIN 字段] B -->|否| D[放弃索引] C --> E{字段选择性 >0.3?} E -->|是| F[设计复合索引] E -->|否| G[考虑其他优化方式] F --> H[验证覆盖查询] H --> I{减少回表?} I -->|是| J[部署索引] I -->|否| K[调整索引字段] J --> L[监控性能变化] ``` ### 常见设计误区 | 误区 | 正确方案 | |------|----------| | 为所有索引 | 按查询需求精选字段 | | 复合索引顺序随意 | 高区分度在前 | | 忽略排序需求 | 将 ORDER BY 字段加入索引 | | 过度依赖执行计划 | 结合真实数据量测试 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值