此系列属于胡寿松《自动控制原理题海与考研指导》(第三版)习题精选,仅包含部分经典习题,需要完整版习题答案请自行查找,本系列属于知识点巩固部分,搭配如下几个系列进行学习,可用于期末考试和考研复习。
自动控制原理(第七版)知识提炼
自动控制原理(第七版)课后习题精选
自动控制原理(第七版)附录MATLAB基础
线性系统的校正方法考研参考题
REFERENCE1
设系统结构图如下图所示,图中固有部分的传递函数为:
G
(
s
)
=
K
s
(
0.1
s
+
1
)
(
0.01
s
+
1
)
G(s)=\frac{K}{s(0.1s+1)(0.01s+1)}
G(s)=s(0.1s+1)(0.01s+1)K
- 当 G c ( s ) = 1 G_c(s)=1 Gc(s)=1时,若要求系统的静态速度误差系数 K v ≥ 100 K_v≥100 Kv≥100,判断系统是否稳定;
- 为了使系统获得大于 30 ° 30° 30°的相角裕度,采用 G c ( s ) = 0.05 s + 1 0.005 s + 1 G_c(s)=\displaystyle\frac{0.05s+1}{0.005s+1} Gc(s)=0.005s+10.05s+1的校正装置进行串联校正,用伯德图证明校正后系统性能满足要求;
- 简述串联校正装置 G c ( s ) G_c(s) Gc(s)对系统性能的影响;
解:
-
判断闭环系统的稳定性。
闭环系统特征方程为:
s ( 0.1 s + 1 ) ( 0.01 s + 1 ) + K = 0 s(0.1s+1)(0.01s+1)+K=0 s(0.1s+1)(0.01s+1)+K=0
即
D ( s ) = 0.001 s 3 + 0.11 s 2 + s + K v = 0 D(s)=0.001s^3+0.11s^2+s+K_v=0 D(s)=0.001s3+0.11s2+s+Kv=0
劳斯表如下:s 3 s^3 s3 0.001 0.001 0.001 1 1 1 s 2 s^2 s2 0.11 0.11 0.11 K v K_v Kv s 1 s^1 s1 0.11 − 0.001 K v 0.11 \displaystyle\frac{0.11-0.001K_v}{0.11} 0.110.11−0.001Kv 0 0 0 s 0 s^0 s0 K v K_v Kv 由劳斯稳定判据可知,使系统稳定的 K v K_v Kv范围为: 0 < K v < 110 0<K_v<110 0<Kv<110.
由题意要求, K v = K ≥ 100 K_v=K≥100 Kv=K≥100,故只有 100 ≤ K v < 110 100≤K_v<110 100≤Kv<110时,系统稳定;当 K v ≥ 110 K_v≥110 Kv≥110时,系统不稳定.
-
用校正后系统的伯德图证明系统满足要求。
校正后系统开环传递函数为:
G c ( s ) G ( s ) = 100 ( 0.05 s + 1 ) s ( 0.1 s + 1 ) ( 0.01 s + 1 ) ( 0.005 s + 1 ) G_c(s)G(s)=\frac{100(0.05s+1)}{s(0.1s+1)(0.01s+1)(0.005s+1)} Gc(s)G(s)=s(0.1s+1)(0.01s+1)(0.005s+1)100(0.05s+1)
取 K = K v = 100 , 20 lg K = 40 d B K=K_v=100,20\lg{K}=40{\rm dB} K=Kv=100,20lgK=40dB,有:低频段 K / s K/s K/s:斜率 − 20 -20 −20,其延长线交 ω \omega ω轴于 100 100 100;
交接频率 ω 1 = 1 / 0.1 = 10 \omega_1=1/0.1=10 ω1=1/0.1=10:斜率变化 − 20 -20 −20;
交接频率 ω 2 = 1 / 0.05 = 20 \omega_2=1/0.05=20 ω2=1/0.05=20:斜率变化 20 20 20;
交接频率 ω 3 = 1 / 0.01 = 100 \omega_3=1/0.01=100 ω3=1/0.01=100:斜率变化 − 20 -20 −20;
交接频率 ω 4 = 1 / 0.005 = 200 \omega_4=1/0.005=200 ω4=1/0.005=200:斜率变化 − 20 -20 −20;
对数幅频渐近特性曲线如下:
由上图可知,已校正系统截止频率为: ω c = 50 \omega_c=50 ωc=50;
相频特性为:
φ
(
ω
)
=
arctan
0.05
ω
−
90
°
−
arctan
0.1
ω
−
arctan
0.01
ω
−
arctan
0.005
ω
\varphi(\omega)=\arctan0.05\omega-90°-\arctan0.1\omega-\arctan0.01\omega-\arctan0.005\omega
φ(ω)=arctan0.05ω−90°−arctan0.1ω−arctan0.01ω−arctan0.005ω
相角裕度为:
γ
=
180
°
+
φ
(
ω
c
)
=
38.9
°
>
30
°
\gamma=180°+\varphi(\omega_c)=38.9°>30°
γ=180°+φ(ωc)=38.9°>30°
故系统满足要求.
-
校正装置对系统性能的影响。
G c ( s ) G_c(s) Gc(s)为串联超前校正,提高了 ω c \omega_c ωc,使系统快速性好,且使系统中频区斜率为 − 20 d B / d e c -20{\rm dB/dec} −20dB/dec,并占据一定频宽,因而提高了系统的 γ \gamma γ,从而减小 σ % \sigma\% σ%,改善系统的动态性能。
REFERENCE2
已知系统结构图如下图所示,设计串联校正网络,使系统相角裕度为 50 ° 50° 50°、截止频率为 6 6 6.
要求:
- 设计校正网络参数,并选择相应的电路,其中元件参数不设计;
- 画出校正前后系统的伯德图;
- 若不采用串联校正,而采用速度反馈校正,画出系统结构图,并确定使系统单位阶跃响应的超调量不超过 15 % 15\% 15%的反馈系数;
解:
-
设计串联校正网络。
待校正系统为:
G 0 ( s ) = 10 s 2 G_0(s)=\frac{10}{s^2} G0(s)=s210
有
ω c ′ = 10 = 3.16 , γ ′ = 0 ° \omega_c'=\sqrt{10}=3.16,\gamma'=0° ωc′=10=3.16,γ′=0°
超前校正网络:
G c ( s ) = 1 + T 2 s 1 + T 1 s , T 2 > T 1 G_c(s)=\frac{1+T_2s}{1+T_1s},T_2>T_1 Gc(s)=1+T1s1+T2s,T2>T1
要求 ω c = ω c ′ ′ = 6 \omega_c=\omega_c''=6 ωc=ωc′′=6,所以选择超前网络 ω m = ω c = 6 \omega_m=\omega_c=6 ωm=ωc=6.因
L 0 ( ω m ) = 20 lg 10 − 20 lg ω m 2 = − 11.126 d B L_0(\omega_m)=20\lg10-20\lg\omega_m^2=-11.126{\rm dB} L0(ωm)=20lg10−20lgωm2=−11.126dB
所以选择
L c ( ω m ) = − L 0 ( ω m ) = 11.126 d B L_c(\omega_m)=-L_0(\omega_m)=11.126{\rm dB} Lc(ωm)=−L0(ωm)=11.126dB
在 L c ( ω ) L_c(\omega) Lc(ω)特性上,有
0 − 11.126 lg 1 T 2 − lg ω m = 20 \frac{0-11.126}{\lg\displaystyle\frac{1}{T_2}-\lg\omega_m}=20 lgT21−lgωm0−11.126=20
如下图所示:
从而解得:
lg T 2 = − 0.22 ⇒ T 2 = 0.6 \lg{T_2}=-0.22\Rightarrow{T_2}=0.6 lgT2=−0.22⇒T2=0.6
校正后系统为:
G ( s ) = G c ( s ) G 0 ( s ) = 10 ( 1 + T 2 s ) s 2 ( 1 + T 1 s ) G(s)=G_c(s)G_0(s)=\frac{10(1+T_2s)}{s^2(1+T_1s)} G(s)=Gc(s)G0(s)=s2(1+T1s)10(1+T2s)
要求 γ = 50 ° \gamma=50° γ=50°,由
γ = 180 ° + ∠ G ( j 6 ) = arctan 6 T 2 − arctan 6 T 1 ⇒ T 1 = 0.076 \gamma=180°+\angle{G({\rm j}6)}=\arctan6T_2-\arctan6T_1\Rightarrow{T_1}=0.076 γ=180°+∠G(j6)=arctan6T2−arctan6T1⇒T1=0.076
则校正网络为:
G c ( s ) = 1 + 0.6 s 1 + 0.076 s G_c(s)=\frac{1+0.6s}{1+0.076s} Gc(s)=1+0.076s1+0.6s
相应电路图如下图所示:
-
画伯德图。
20 lg K = 20 d B , ω c = ω m = 6 , 1 T 2 = 1.67 , 1 T 1 = 13.16 20\lg{K}=20{\rm dB},\omega_c=\omega_m=6,\frac{1}{T_2}=1.67,\frac{1}{T_1}=13.16 20lgK=20dB,ωc=ωm=6,T21=1.67,T11=13.16
校正前后系统伯德图:
对数幅频: L 0 ( ω ) L_0(\omega) L0(ω)与 L ( ω ) L(\omega) L(ω);
对数相频:
φ 0 ( ω ) = − 180 ° ; φ ( ω ) = − 180 ° + arctan 0.6 ω − arctan 0.076 ω \begin{aligned} &\varphi_0(\omega)=-180°;\\\\ &\varphi(\omega)=-180°+\arctan0.6\omega-\arctan0.076\omega \end{aligned} φ0(ω)=−180°;φ(ω)=−180°+arctan0.6ω−arctan0.076ω -
采用速度反馈校正。
速度反馈校正方案的结构图如下:
其开环与闭环传递函数为:
G ( s ) = 10 / s 2 1 + 10 K t s / s 2 = 10 s ( s + 10 K t ) G(s)=\frac{10/s^2}{1+10K_ts/s^2}=\frac{10}{s(s+10K_t)} G(s)=1+10Kts/s210/s2=s(s+10Kt)10Φ ( s ) = 10 s 2 + 10 K t s + 10 = ω n 2 s 2 + 2 ζ ω n s + ω n 2 \Phi(s)=\frac{10}{s^2+10K_ts+10}=\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2} Φ(s)=s2+10Kts+1010=s2+2ζωns+ωn2ωn2
故有
ω n 2 = 10 , 2 ζ ω n = 10 K t \omega_n^2=10,2\zeta\omega_n=10K_t ωn2=10,2ζωn=10Kt
按题意要求: σ % ≤ 15 % \sigma\%≤15\% σ%≤15%.对于无零点二阶系统,有:
σ % = e − π ζ / 1 − ζ 2 × 100 % ≤ 15 % ⇒ ζ ≥ 0.517 \sigma\%={\rm e}^{-\pi\zeta/\sqrt{1-\zeta^2}}\times100\%≤15\%\Rightarrow\zeta≥0.517 σ%=e−πζ/1−ζ2×100%≤15%⇒ζ≥0.517
取 ζ = 0.55 \zeta=0.55 ζ=0.55,可得:
K t = 2 ζ ω n 10 = 0.348 K_t=\frac{2\zeta\omega_n}{10}=0.348 Kt=102ζωn=0.348
对应的系统超调量为:
σ % = e − π ζ / 1 − ζ 2 × 100 % = 12.6 % < 15 % \sigma\%={\rm e}^{-\pi\zeta/\sqrt{1-\zeta^2}}\times100\%=12.6\%<15\% σ%=e−πζ/1−ζ2×100%=12.6%<15%
满足设计要求.
REFERENCE3
设某单位反馈系统开环传递函数为: G ( s ) = K s ( s + 1 ) ( 0.5 s + 1 ) G(s)=\displaystyle\frac{K}{s(s+1)(0.5s+1)} G(s)=s(s+1)(0.5s+1)K,输入信号 r ( t ) = t r(t)=t r(t)=t.
要求:
- 确定使系统相角裕度 γ = 40 ° \gamma=40° γ=40°的 K K K值,并计算系统稳态误差 e s s ( ∞ ) e_{ss}(\infty) ess(∞);
- 设计串联滞后校正网络 G c ( s ) G_c(s) Gc(s)及 K K K值,使校正后系统的 e s s ( ∞ ) = 0.2 , γ ≥ 40 ° e_{ss}(\infty)=0.2,\gamma≥40° ess(∞)=0.2,γ≥40°;
解:
-
确定待校正系统 K K K值。
由题要求,待校正系统的相角裕度为:
γ = 180 ° − 90 ° − arctan ω c ′ − arctan 0.5 ω c ′ = 40 ° \gamma=180°-90°-\arctan\omega_c'-\arctan0.5\omega_c'=40° γ=180°−90°−arctanωc′−arctan0.5ωc′=40°
利用三角函数求和公式,可得:
90 ° − arctan ( ω c ′ + 0.5 ω c ′ 1 − 0.5 ( ω c ′ ) 2 ) = 40 ° ⇒ ω c ′ = 0.635 90°-\arctan\left(\displaystyle\frac{\omega_c'+0.5\omega_c'}{1-0.5(\omega_c')^2}\right)=40°\Rightarrow\omega_c'=0.635 90°−arctan(1−0.5(ωc′)2ωc′+0.5ωc′)=40°⇒ωc′=0.635
在待校正系统的对数幅频特性上,系统各环节的交接频率 ω 1 = 1 \omega_1=1 ω1=1和 ω 2 = 2 \omega_2=2 ω2=2,均大于截止频率 ω c ′ \omega_c' ωc′,故该 ω c ′ \omega_c' ωc′值必为低频段 − 20 d B / d e c -20{\rm dB/dec} −20dB/dec直线与 ω \omega ω轴的直接交点,有:
K = ω c ′ = 0.635 K=\omega_c'=0.635 K=ωc′=0.635
系统在斜坡函数作用下的稳态误差:
e s s ( ∞ ) = 1 K = 1.575 e_{ss}(\infty)=\frac{1}{K}=1.575 ess(∞)=K1=1.575 -
串联滞后网络设计。
由于要求 e s s ( ∞ ) = 1 / K = 0.2 e_{ss}(\infty)=1/K=0.2 ess(∞)=1/K=0.2,取 K = 5 K=5 K=5,则待校正系统为:
G ( s ) = 5 s ( s + 1 ) ( 1 + 0.5 s ) G(s)=\frac{5}{s(s+1)(1+0.5s)} G(s)=s(s+1)(1+0.5s)5
此时, ω c ′ ≠ 0.635 , γ ′ ≠ 40 ° \omega_c'≠0.635,\gamma'≠40° ωc′=0.635,γ′=40°.选滞后网络:
G c ( s ) = 1 + b T s 1 + T s , b < 1 G_c(s)=\frac{1+bTs}{1+Ts},b<1 Gc(s)=1+Ts1+bTs,b<1
其对数幅频渐近特性为:
已校正系统相角裕度:
γ = γ ′ ′ = 90 ° − arctan 1.5 ω c ′ ′ 1 − 0.5 ( ω c ′ ′ ) 2 + φ c ( ω c ′ ′ ) = 40 ° \gamma=\gamma''=90°-\arctan\displaystyle\frac{1.5\omega_c''}{1-0.5(\omega_c'')^2}+\varphi_c(\omega_c'')=40° γ=γ′′=90°−arctan1−0.5(ωc′′)21.5ωc′′+φc(ωc′′)=40°
其中: φ c ( ω c ′ ′ ) \varphi_c(\omega_c'') φc(ωc′′)是串联滞后网络在 ω c ′ ′ \omega_c'' ωc′′出产生的相角滞后,取 φ c ( ω c ′ ′ ) = − 5 ° \varphi_c(\omega_c'')=-5° φc(ωc′′)=−5°,有:
( ω c ′ ′ ) 2 + 3 ω c ′ ′ − 2 = 0 ⇒ ω c ′ ′ = 0.56 (\omega_c'')^2+3\omega_c''-2=0\Rightarrow\omega_c''=0.56 (ωc′′)2+3ωc′′−2=0⇒ωc′′=0.56
取 1 / ( b T ) = 0.1 ω c ′ ′ = 0.056 1/(bT)=0.1\omega_c''=0.056 1/(bT)=0.1ωc′′=0.056,解得: b T = 17.86 bT=17.86 bT=17.86。为保证 ω c ′ ′ = 0.56 \omega_c''=0.56 ωc′′=0.56不受影响,取:
20 lg b = − 20 lg K ω c ′ ′ , K = 5 , ω c ′ ′ = 0.56 20\lg{b}=-20\lg\frac{K}{\omega_c''},K=5,\omega_c''=0.56 20lgb=−20lgωc′′K,K=5,ωc′′=0.56
解得:
b = 0.112 , T = b T / b = 159.46 , 1 / T = 0.00627 b=0.112,T=bT/b=159.46,1/T=0.00627 b=0.112,T=bT/b=159.46,1/T=0.00627
则串联滞后网络及已校正系统的传递函数为:
G c ( s ) = 1 + 17.86 s 1 + 159.46 s , G c ( s ) G ( s ) = 5 ( 1 + 17.86 s ) s ( 1 + 0.5 s ) ( 1 + s ) ( 1 + 159.46 s ) G_c(s)=\frac{1+17.86s}{1+159.46s},G_c(s)G(s)=\frac{5(1+17.86s)}{s(1+0.5s)(1+s)(1+159.46s)} Gc(s)=1+159.46s1+17.86s,Gc(s)G(s)=s(1+0.5s)(1+s)(1+159.46s)5(1+17.86s)
REFERENCE4
设系统结构图如下图所示,已知当
r
(
t
)
=
5.8
×
1
(
t
)
,
n
(
t
)
=
0
r(t)=5.8\times1(t),n(t)=0
r(t)=5.8×1(t),n(t)=0时,系统的稳态输出为
1.0
1.0
1.0。
要求:
- 确定结构参数 a a a,并计算系统的时域性能指标超调量 σ % \sigma\% σ%和调节时间 t s ( Δ = 5 % ) t_s(\Delta=5\%) ts(Δ=5%);
- 当 r ( t ) = 5 sin ω t , n ( t ) = 0 r(t)=5\sin\omega{t},n(t)=0 r(t)=5sinωt,n(t)=0时,求使系统稳态输出信号振幅最大时,输出信号的角频率 ω r \omega_r ωr和最大的输出振幅 A m A_m Am;
- 设计校正环节 G n ( s ) G_n(s) Gn(s),使系统输出不受可测扰动 n ( t ) n(t) n(t)的影响;
解:
-
确定参数 a a a并计算动态性能。
闭环系统传递函数为:
G ( s ) = 12 ( 2.9 s + 1 ) ( s + a ) = 12 2.9 s 2 + ( 1 + 2.9 a ) s + a H ( s ) = 5.6 Φ ( s ) = G ( s ) 1 + G ( s ) H ( s ) = 12 2.9 s 2 + ( 1 + 2.9 a ) s + ( a + 12 × 5.6 ) \begin{aligned} &G(s)=\frac{12}{(2.9s+1)(s+a)}=\frac{12}{2.9s^2+(1+2.9a)s+a}\\\\ &H(s)=5.6\\\\ &\Phi(s)=\frac{G(s)}{1+G(s)H(s)}=\frac{12}{2.9s^2+(1+2.9a)s+(a+12\times5.6)} \end{aligned} G(s)=(2.9s+1)(s+a)12=2.9s2+(1+2.9a)s+a12H(s)=5.6Φ(s)=1+G(s)H(s)G(s)=2.9s2+(1+2.9a)s+(a+12×5.6)12
因 R ( s ) = 5.8 s R(s)=\displaystyle\frac{5.8}{s} R(s)=s5.8,故系统稳态输出为:
c s s ( ∞ ) = lim s → 0 s C ( s ) = lim s → 0 s Φ ( s ) R ( s ) = lim s → 0 s ⋅ 12 2.9 s 2 + ( 1 + 2.9 a ) s + ( a + 12 × 5.6 ) ⋅ 5.8 s = 1 \begin{aligned} c_{ss}(\infty)&=\lim_{s\to0}sC(s)=\lim_{s\to0}s\Phi(s)R(s)\\\\ &=\lim_{s\to0}s·\frac{12}{2.9s^2+(1+2.9a)s+(a+12\times5.6)}·\frac{5.8}{s}\\\\ &=1 \end{aligned} css(∞)=s→0limsC(s)=s→0limsΦ(s)R(s)=s→0lims⋅2.9s2+(1+2.9a)s+(a+12×5.6)12⋅s5.8=1
解得:
69.6 a + 67.2 = 1 ⇒ a = 2.4 \frac{69.6}{a+67.2}=1\Rightarrow{a=2.4} a+67.269.6=1⇒a=2.4
将 a = 2.4 a=2.4 a=2.4代入闭环传递函数,整理后可得:
Φ ( s ) = 4.138 s 2 + 2.745 s + 24 \Phi(s)=\frac{4.138}{s^2+2.745s+24} Φ(s)=s2+2.745s+244.138
故闭环特征方程为:
D ( s ) = s 2 + 2.745 s + 24 = s 2 + 2 ζ ω n s + ω n 2 = 0 D(s)=s^2+2.745s+24=s^2+2\zeta\omega_ns+\omega_n^2=0 D(s)=s2+2.745s+24=s2+2ζωns+ωn2=0
解得:
ω n = 24 = 4.90 , ζ = 2.745 2 ω n = 0.280 \omega_n=\sqrt{24}=4.90,\zeta=\frac{2.745}{2\omega_n}=0.280 ωn=24=4.90,ζ=2ωn2.745=0.280
有
σ % = e − π ζ / 1 − ζ 2 × 100 % = 40 % , t s = 3.5 ζ ω n = 2.55 ( Δ = 5 % ) \sigma\%={\rm e}^{-\pi\zeta/\sqrt{1-\zeta^2}}\times100\%=40\%,t_s=\frac{3.5}{\zeta\omega_n}=2.55(\Delta=5\%) σ%=e−πζ/1−ζ2×100%=40%,ts=ζωn3.5=2.55(Δ=5%) -
求 ω r \omega_r ωr与 A m A_m Am。
将闭环传递函数改写为:
Φ ( s ) = Φ ( 0 ) ( s ω n ) 2 + 2 ζ ( s ω n ) + 1 \Phi(s)=\frac{\Phi(0)}{\left(\displaystyle\frac{s}{\omega_n}\right)^2+2\zeta\left(\displaystyle\frac{s}{\omega_n}\right)+1} Φ(s)=(ωns)2+2ζ(ωns)+1Φ(0)
其中: Φ ( 0 ) = 4.138 / ω n 2 = 0.172 \Phi(0)=4.138/\omega_n^2=0.172 Φ(0)=4.138/ωn2=0.172。闭环频率特性:
Φ ( j ω ) = Φ ( ω ) ∠ Φ ( j ω ) \Phi({\rm j}\omega)=\Phi(\omega)\angle\Phi({\rm j}\omega) Φ(jω)=Φ(ω)∠Φ(jω)
其中:
Φ ( ω ) = ∣ Φ ( j ω ) ∣ = Φ ( 0 ) ( 1 − ω 2 ω n 2 ) 2 + 4 ζ 2 ω 2 ω n 2 \Phi(\omega)=|\Phi({\rm j}\omega)|=\frac{\Phi(0)}{\sqrt{\left(1-\displaystyle\frac{\omega^2}{\omega_n^2}\right)^2+4\zeta^2\displaystyle\frac{\omega^2}{\omega_n^2}}} Φ(ω)=∣Φ(jω)∣=(1−ωn2ω2)2+4ζ2ωn2ω2Φ(0)
令
d Φ ( ω ) d ω = − Φ ( 0 ) [ − 2 ω ω n 2 ( 1 − ω 2 ω n 2 ) + 4 ζ 2 ω 2 ω n 2 ] [ ( 1 − ω 2 ω n 2 ) 2 + 4 ζ 2 ω 2 ω n 2 ] 3 / 2 = 0 \frac{{\rm d}\Phi(\omega)}{{\rm d}\omega}=\frac{-\Phi(0)\left[-\displaystyle\frac{2\omega}{\omega_n^2}\left(1-\displaystyle\frac{\omega^2}{\omega_n^2}\right)+4\zeta^2\displaystyle\frac{\omega^2}{\omega_n^2}\right]}{\left[\left(1-\displaystyle\frac{\omega^2}{\omega_n^2}\right)^2+4\zeta^2\displaystyle\frac{\omega^2}{\omega_n^2}\right]^{3/2}}=0 dωdΦ(ω)=[(1−ωn2ω2)2+4ζ2ωn2ω2]3/2−Φ(0)[−ωn22ω(1−ωn2ω2)+4ζ2ωn2ω2]=0
解得:
ω r = ω n 1 − 2 ζ 2 = 4.50 \omega_r=\omega_n\sqrt{1-2\zeta^2}=4.50 ωr=ωn1−2ζ2=4.50
将 ω r \omega_r ωr代入 Φ ( ω ) \Phi(\omega) Φ(ω),可得:
Φ m ( ω r ) = Φ ( 0 ) 2 ζ 1 − ζ 2 = 0.32 \Phi_m(\omega_r)=\frac{\Phi(0)}{2\zeta\sqrt{1-\zeta^2}}=0.32 Φm(ωr)=2ζ1−ζ2Φ(0)=0.32
因 r ( t ) = A r sin ω t , A r = 5 r(t)=A_r\sin\omega{t},A_r=5 r(t)=Arsinωt,Ar=5,故稳态输出最大振幅为:
A m = A r Φ m ( ω r ) = 1.60 A_m=A_r\Phi_m(\omega_r)=1.60 Am=ArΦm(ωr)=1.60 -
设计 G n ( s ) G_n(s) Gn(s)。
将系统结构图化简即可,可求 G n ( s ) = 2.9 s + 1 G_n(s)=2.9s+1 Gn(s)=2.9s+1。