
消息队列
文章平均质量分 96
你是橙子那我是谁
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
消息队列如何保证消息的顺序性
消息队列顺序性保障方案 本文探讨了消息队列在分布式系统中保证消息顺序性的重要性及实现方案。主要内容包括: 核心业务场景:订单状态流转、库存操作、数据同步和金融交易等关键业务场景需要严格的消息顺序性,否则会导致数据不一致、业务逻辑错误甚至经济损失。 技术挑战:多生产者并发、多消费者并行消费、消息重试机制和网络延迟等因素都会破坏消息顺序性。消息队列的分区特性虽提升性能但也增加了顺序保障难度。 解决方案: 生产者端通过业务ID哈希路由确保相关消息进入同一分区 消费者端采用单线程/队列消费同一分区消息 实现消息幂等原创 2025-08-16 07:00:00 · 2293 阅读 · 0 评论 -
消息队列如何解决消息丢失,消息顺序性,消息的重复消费?
消息队列核心挑战解决方案 消息队列面临三大核心挑战:消息丢失、顺序性和重复消费。本文深入剖析了全方位的解决方案: 消息丢失:构建生产者-中间件-消费者的全链路防护: 生产者端:采用事务+幂等+重试+本地消息表 Broker端:多副本+持久化+高可用架构 消费者端:手动确认+死信队列+失败重试 消息顺序性:提供多维度解决方案: 单分区单消费者(严格顺序) 消息分组(相同Key入同分区) 版本号控制(灵活校验) 状态机模式(业务语义明确) 重复消费:实现幂等性处理: 唯一标识去重 数据库乐观锁 状态机校验 分布原创 2025-06-20 16:00:00 · 1126 阅读 · 0 评论 -
万字长文说明RocketMQ底层原理实现
本文深入剖析了RocketMQ分布式消息引擎的底层实现原理。RocketMQ采用主从架构设计,包含NameServer路由服务、Broker消息存储转发和生产者/消费者三大组件。其高性能存储引擎基于"日志即数据库"理念,通过顺序写入、内存映射和文件预分配等优化实现高吞吐。消息存储采用CommitLog主文件+ConsumeQueue/IndexFile索引的三层结构,确保高效检索。系统提供同步/异步复制机制,支持秒级故障转移,并通过智能拉取、动态负原创 2025-06-20 08:00:00 · 1026 阅读 · 0 评论 -
RocketMQ实战之实现聊天功能
今天,我们将深入探讨如何利用RocketMQ构建一个聊天系统,涵盖从基础实现到高级优化的完整方案。无论你是想开发一个简单的聊天应用,还是需要构建支持万级并发的社交平台,本文都能为你提供实用的技术指导。原创 2025-06-19 20:00:00 · 974 阅读 · 0 评论 -
消息队列的消息机制你能说出来多少?
消息队列是现代分布式系统的核心组件,本文全面解析了消息机制的关键要素: 消息结构:包含消息头(元数据)、消息体(业务数据)和属性(控制行为)三部分,不同类型消息适用于不同场景 生命周期:从创建发布、存储路由到消费确认的完整流程,生产者需合理设计消息格式和路由策略 消费模式:对比了Push和Pull两种模式的优缺点及适用场景,分析了各自的实现特点和性能表现 确认机制:介绍了自动确认、单条确认和批量确认三种方式,以及实现可靠消费的最佳实践 通过系统掌握这些核心概念,开发者可以构建更高效、可靠的分布式消息系统。原创 2025-06-19 12:05:31 · 974 阅读 · 0 评论 -
如何根据你的业务选择合适的消息中间件?
消息中间件就像餐厅订单系统,解耦服务间的直接依赖,使信息有序传递。选择合适中间件需评估业务需求:高吞吐量可选Kafka,金融级可靠用RocketMQ,简单场景用Redis Stream,云环境用AWS SQS。关键考量包括吞吐量、延迟、可靠性、顺序性和消费模式。典型场景中,电商订单推荐RabbitMQ/RocketMQ,金融支付用RocketMQ,日志收集选Kafka,实时聊天用Redis Stream。实施时需优化批量处理和分区设计,如RocketMQ批量发送可显著提升性能。不同业务需匹配不同中间件特性才原创 2025-06-18 16:00:00 · 809 阅读 · 0 评论