自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 收藏
  • 关注

原创 AdaBoost(Adaptive Boosting,自适应提升算法)总结梳理

AdaBoost是一种自适应增强算法,通过迭代训练多个弱学习器(如决策树桩)并动态调整样本权重与模型权重,将弱学习器组合为强学习器。其核心在于:1)对误分类样本增加权重,使后续模型更关注难分样本;2)根据误差赋予模型不同权重,表现好的模型在最终投票中更具话语权。该算法简单高效,适合基础分类任务和数据质量验证,但存在对噪声敏感、无法并行训练等局限。相比XGBoost等后续算法,AdaBoost缺乏正则化机制,在高维稀疏数据上表现较弱。

2025-09-02 18:15:00 820

原创 CatBoost(Categorical Boosting,类别提升)总结梳理

CatBoost是一种改进的梯度提升决策树算法,核心优势在于原生支持类别特征处理和降低过拟合风险。其原理是通过改进的目标编码处理类别特征,结合贝叶斯平滑避免小样本过拟合,并采用排序增强技术修正梯度估计偏差。训练过程包括初始化预测结果、迭代构建决策树、计算叶子节点权重等步骤,最终通过加权求和得到预测结果。该算法特别适合类别特征丰富的场景(如电商推荐、金融风控),能显著简化数据预处理流程,同时保持较高的模型精度和泛化能力。主要参数包括学习率、树深度、L2正则系数等,通过合理调参可进一步提升性能。

2025-09-01 14:27:29 630

原创 LightGBM(Light Gradient Boosting Machine,轻量级梯度提升机)梳理总结

LightGBM是微软2017年提出的高效梯度提升树模型,相比XGBoost显著提升了训练速度和内存效率。其核心技术包括:GOSS(梯度采样保留关键样本)、EFB(互斥特征捆绑压缩维度)和直方图优化,使速度提升10-100倍,内存降低50-70%,同时保持精度接近XGBoost。采用叶子优先生长策略,用更少的树达到更高精度。特别适合处理大规模(百万级样本)、高维特征(如One-Hot编码)场景,在分类、回归、排序等任务中表现优异。需注意控制树深度防止过拟合,调参以num_leaves、learning_ra

2025-08-30 16:45:00 1002

原创 XGBoost(eXtreme Gradient Boosting,优化分布式梯度提升库)总结梳理

XGBoost是GBDT的优化升级版本,在保持强拟合能力的同时,通过二阶导数优化、显式正则化和工程优化解决了GBDT训练慢、易过拟合的问题。核心改进包括:使用二阶泰勒展开更精准地近似损失函数;引入正则化项控制模型复杂度;采用特征并行、近似算法等工程优化加速训练。XGBoost在分类、回归和排序任务中表现优异,具有精度高、训练快、鲁棒性强等优势,但需注意超参数调优和特征预处理。与GBDT的关键区别在于使用了二阶导数、显式正则化以及工程优化技术。

2025-08-28 14:14:50 1021 2

原创 GBDT(Gradient Boosting Decision Tree,梯度提升决策树)总结梳理

GBDT是一种基于决策树的Boosting集成算法,通过串行训练多棵浅层回归树来逐步优化模型。其核心思想是:每轮用新树拟合损失函数的负梯度(错误信号),以加法方式累积预测结果。相比随机森林等Bagging方法,GBDT更擅长降低模型偏差,适用于回归、分类和排序任务。优势包括强非线性拟合能力、特征重要性输出和不依赖特征归一化,但对异常值敏感且训练速度较慢。XGBoost和LightGBM是其优化版本,引入了二阶导数和并行计算等改进。实际应用中需注意调整学习率、树深度等参数防止过拟合。

2025-08-27 15:48:34 720 1

原创 GBDT、XGBoost和LightGBM学习记录

本文介绍了三种主流梯度提升算法:GBDT作为基础算法,通过迭代决策树纠正错误;XGBoost在GBDT基础上加入正则化和二阶导数优化;LightGBM进一步改进为直方图算法等提升效率。还提及了CatBoost(擅长类别特征处理)和AdaBoost(经典自适应提升算法)。这些算法各具特色,共同构成了梯度提升方法的丰富生态。

2025-08-26 15:22:05 206

原创 阿里 STAR 模型:多域 CTR 预测的星型拓扑解决方案

阿里团队提出的STAR模型创新性地解决了多域CTR预测的难题。该模型采用星型拓扑结构,通过共享网络挖掘多域共性特征,同时使用轻量级域特定网络捕捉差异特性,实现共性与差异的平衡。关键设计包括分区归一化处理数据分布偏差、辅助网络强化域信息、共享嵌入层控制参数成本。实验显示STAR在19个业务域上AUC提升显著,工业落地带来8%CTR和6%RPM增长,同时保持与单模型相当的推理成本。该模型以简洁架构实现高效多域适配,为工业推荐系统提供了实用解决方案。

2025-08-20 17:15:00 745

原创 召回计算记录

数据依据:用户最近点击的 N 条物品(不去重)分数计算逻辑:与「基于点击的类别偏好物品召回」完全一致,仅将统计维度替换为物品的「自定义偏好属性」。

2025-08-20 14:37:39 480

原创 逻辑回归(Logistic Regression)

逻辑回归是一种基于线性回归与Sigmoid函数的有监督分类算法,通过最小化交叉熵损失进行参数优化。其核心流程包括数据预处理、线性组合、概率映射、损失计算和梯度下降迭代。广泛应用于金融风控、医疗诊断、营销预测等领域,既能输出分类结果和概率估计,又能分析特征重要性。典型应用场景包括客户信用评估、疾病预测、购买行为分析等,具有结果可解释性强、计算效率高等优势。

2025-08-19 15:42:58 492

原创 协同过滤算法(Collaborative Filtering, CF)

协同过滤是推荐系统的核心算法之一,核心思想是 “物以类聚,人以群分”—— 通过分析用户与物品的交互历史(如评分、点击、购买),挖掘用户偏好或物品相似性,进而为用户推荐可能感兴趣的物品,无需依赖物品自身属性或用户画像。先总结一下:协同过滤算法是仅依赖用户与物品的交互历史,通过挖掘相似用户或相似物品,为用户推荐可能感兴趣的物品,无需领域知识且能发现潜在偏好的推荐系统核心方法。其中,‌:若用户A与用户B历史行为相似,则A喜欢的项目可能也适合B。‌‌。

2025-08-19 15:31:26 812

原创 RNN(循环神经网络)

RNN(循环神经网络)是专为处理时序数据设计的神经网络,通过隐藏层的循环连接保留历史信息,解决传统神经网络无法捕捉序列依赖的问题。其核心结构输入层接收时序数据,隐藏层融合当前输入和上一时刻状态,输出层基于当前状态生成结果。但原生RNN存在梯度消失/爆炸问题,改进模型LSTM和GRU通过门控机制有效缓解。RNN广泛应用于NLP、语音识别和时序预测等领域。与DNN相比,RNN专为时序数据设计,具有参数共享和记忆能力,擅长处理需结合上下文的任务,而DNN则适用于静态数据分析。

2025-08-18 17:22:37 707

原创 DNN(深度神经网络)

DNN(深度神经网络)是一种多层结构的人工神经网络,通过输入层、隐藏层和输出层实现复杂数据处理。其核心原理包括前向传播的信息传递和反向传播的参数优化,利用激活函数、损失函数、优化器等组件提升性能。DNN具有强大的非线性拟合能力,可自动提取特征,广泛应用于图像分类、文本分析等领域,但也面临数据需求大、计算成本高等挑战。典型应用包括ResNet、机器翻译等。

2025-08-18 17:14:55 779

原创 LightGCN 模型

LightGCN是一个专为协同过滤推荐设计的简化图卷积网络。它通过去除传统GCN中不必要的特征变换和非线性激活,仅保留关键的邻居聚合机制,在用户-物品二分图上进行多层线性嵌入传播。模型将各层嵌入加权求和得到最终表示,通过计算相似度完成推荐。相比传统GCN,LightGCN结构更简洁,训练更高效,在推荐任务中性能提升约16%,同时保持了良好的可解释性。

2025-08-18 16:41:15 847

原创 transformer整体流程框架

Transformer是Google提出的革命性架构,通过自注意力机制解决了传统RNN/LSTM并行性差和长距离依赖弱的问题。其核心采用编码器-解码器结构:编码器通过多头自注意力和前馈网络提取全局上下文特征,解码器结合上下文生成输出序列。关键创新包括位置编码解决序列顺序问题,以及残差连接稳定深层网络训练。该架构实现了高效并行计算和强大的长距离语义建模能力,成为BERT、GPT等大模型的基础,极大推动了NLP领域发展。

2025-08-15 16:15:50 841

原创 Long-Term Interest Clock 长期兴趣时钟

本文提出LIC方法,针对现有时间感知推荐系统在长期兴趣建模上的不足。通过Clock-GSU模块从长期行为中检索与当前时间相关的子序列,再经Clock-ESU模块的时间间隙感知多头注意力机制聚合生成细粒度兴趣嵌入。在抖音音乐数据集上的实验表明,LIC显著提升推荐效果(AUC+1.16%),并成功应用于工业场景。相比InterestClock,LIC突破短期行为限制,实现项目级细粒度建模,通过平滑时间机制更精准捕捉用户兴趣动态。

2025-08-14 16:46:10 18

原创 Interest Clock 兴趣时钟

摘要:字节跳动团队提出InterestClock方法,解决实时流推荐系统的时间感知问题。该方法通过小时级个性化特征编码提取用户24小时偏好特征,并采用高斯平滑聚合消除离散突变,有效捕捉时间动态偏好。在抖音音乐App的测试中,用户活跃天数提升0.509%,使用时长达0.758%增长,各项参与指标均改善。离线实验显示AUC提升至0.6695,验证了高斯平滑的有效性。该方案已成功部署,兼具效果提升与场景通用性优势。

2025-08-14 16:36:59 152

原创 模型特征重要性计算方法

特征重要性评估方法主要分为四类:1. 模型内置方法(如树模型的Gini重要性、线性模型系数);2. 统计方法(方差分析、卡方检验等);3. 扰动法(置换重要性、Drop-column法);4. SHAP值等博弈论方法。不同方法各有特点:树模型方法计算快但不适合高基数特征,线性方法仅适用于线性关系,SHAP能捕捉特征交互但计算量大。实际应用中需根据模型类型和需求选择合适方法,并注意特征归一化、非线性关系等关键因素。这些方法有助于特征选择、业务解释和异常检测等应用场景。

2025-07-10 16:30:08 603

原创 MaskNet 排序模型

MaskNet是一种基于注意力机制的深度学习模型,专为推荐系统和点击率预测设计。其核心创新是实例引导的掩码机制,为每个输入动态生成个性化掩码,使模型能智能选择重要特征。模型支持串行和并行两种架构:串行模式逐步处理特征,并行模式多视角并行处理。相比传统模型,MaskNet具有动态结构调整能力,能更好地处理稀疏数据,提高特征选择性和模型泛化性。在训练时建议使用Adam优化器,适当设置Dropout和L2正则。该模型特别适合处理高维稀疏的用户行为数据,同时增强了模型的可解释性。

2025-07-03 14:49:45 599

原创 Fibinet排序模型

实现了“特征嵌入 → 动态加权 → 深度交互 → 概率预测”的完整流程,是工业级推荐系统中经典的 “深度特征工程 + 注意力机制” 模型,适合需要精准捕捉特征关联的场景。挖掘特征间复杂关联,最终用 MLP 输出预测结果(如用户点击概率)。,主要用于推荐系统场景。对特征重要性动态加权,结合。

2025-07-03 14:43:21 833

原创 论文阅读记录(Rocket Launching: A Universal and Efficient Framework for TrainingWell-performing Light Net)

工业应用中实时响应任务需兼顾模型精度与延迟- 传统深度模型因推理时间限制难以满足工业需求- 轻量级模型需在精度与计算成本间权衡- 师生网络方法通过知识蒸馏提升轻量模型性能。

2025-05-22 09:54:13 351 1

masknet排序模型

MaskNet是一种基于注意力机制的深度学习模型,通过动态生成掩码(mask)对输入特征进行选择性关注与抑制,以增强关键信息建模能力,广泛应用于推荐系统等领域。

2025-07-03

Fibinet排序模型代码

FiBiNet(Feature Importance Bilinear Network)是一种用于推荐系统的排序模型,于 2019 年由华为提出。其核心创新点在于引入了特征重要性(Feature Importance)机制,通过量化不同特征对预测结果的贡献程度,增强模型对关键特征的捕捉能力,从而提升排序效果。

2025-07-03

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除