论文由字节跳动团队撰写,聚焦实时流推荐系统中的时间感知问题,提出了一种名为 “Interest Clock” 的方法,旨在捕捉用户随时间动态变化的偏好,核心内容总结如下:
一、研究背景与问题
用户偏好具有时间动态性(如早间偏好新闻、晚间偏好电影),但现有推荐系统的时间建模存在局限:
- 传统时间编码方法(将小时、星期编码为离散嵌入)在实时流训练框架中失效 —— 流框架下同一时刻的训练样本时间特征相同,导致模型仅拟合当前时间信息,忽略其他时段,引发周期性波动和不稳定性。
- 其他方法(如外卖推荐的时间段划分、序列模型中的时间间隔编码)难以适配短视频、音乐等多场景,且无法直接建模时间动态偏好。
二、核心方法:Interest Clock
Interest Clock 通过 “编码 - 平滑聚合” 两步实现时间感知,具体流程如下:
-
小时级个性化特征编码
将一天划分为 24 个小时桶,基于用户过去 30 天每个小时的消费数据(如喜欢、完成、跳过、不喜欢等行为),计算用户在该小时对特定特征(如音乐类型、情绪、语言)的偏好分数(公式: -
,提取 top3 特征作为该小时的时间感知特征,形成 24 小时的 “时钟” 特征(如
v_time^genre
表示各小时的类型偏好嵌入)。 -
高斯分布平滑聚合
为解决离散小时特征导致的兴趣突变问题,采用高斯分布对 24 小时特征进行加权聚合:- 计算当前时间与每个小时的最小时间差
δ_time
; - 用高斯函数生成权重,距离当前时间越近的小时权重越高;
- 加权求和得到最终兴趣时钟嵌入
v_clock
,与其他特征拼接后输入深度网络用于预测。
- 计算当前时间与每个小时的最小时间差
三、实验结果
-
在线 A/B 测试
在抖音音乐 App 的排序任务中,Interest Clock 部署后:- 核心指标:用户活跃天数提升 0.509%,应用时长提升 0.758%(均为统计显著,远超行业平均 0.05%-0.1% 的提升);
- 辅助指标:点赞、完成播放、评论、播放量等用户参与度指标均有改善,且对低、中、高活跃用户组均有效。
-
离线实验
在含 200 亿样本的抖音音乐数据集(DouyinMusic-20B)上,高斯时钟(Gaussian Clock)的 AUC(0.6695)和 UAUC(0.6069)显著优于基线(0.6631/0.6007)及其他变体(Naive Clock、Adaptive Clock),验证了高斯平滑的有效性。
四、结论与应用
Interest Clock 是首个针对实时流推荐系统的时间感知方法,通过个性化小时特征与高斯平滑,有效解决了传统时间建模的局限性。该方法已在抖音音乐 App 大规模部署,在提升用户活跃度和使用时长上表现显著,且具备场景通用性。