博主介绍:✌全网粉丝50W+,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流✌
技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。
主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路。
🍅文末获取源码联系🍅
👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟
2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
系统介绍:
随着经济的发展和人口的增加,能源消耗也在不断增加。电力作为人们生产和生活中不可或缺的一部分,对于能源消耗的贡献也非常大。传统的电力供应模式已经无法满足人们对电力的需求,同时也带来了环境污染等问题。如何优化电力供应模式,提高能源利用效率,成为了当前亟待解决的问题。而电力能耗数据分析正是解决这一问题的有效手段之一。本研究基于Spark技术对电力能耗数据进行分析,旨在为电力企业提供决策支持,优化能源消耗结构,提高能源利用效率。通过对历史用电数据的分析,可以得到不同时间段内的用电趋势、用电负荷分布、能源消耗结构等信息,为电力企业的生产管理和决策提供科学依据。该系统可以帮助政府制定合理的能源政策,促进可持续发展。还可以为普通用户提供更加智能化的用电服务,提高用电效率,节约能源。因此,本研究具有重要的理论和实践意义。
近年来,随着大数据技术的快速发展,电力能耗数据分析系统在国内得到了广泛的关注和应用。国内学者和研究人员在电力能耗数据分析领域开展了大量的研究工作,涉及到数据清洗、特征提取、模型训练等方面。基于Spark技术的电力能耗数据分析系统成为了研究的热点之一。许多研究者利用Spark技术对电力能耗数据进行分析,得出了不同时间段内的用电趋势、用电负荷分布、能源消耗结构等信息,为电力企业的生产管理和决策提供了科学依据。
在国外,电力能耗数据分析也受到了广泛的关注和应用。许多国外的研究机构和企业都在开展相关的研究工作。其中,美国、欧洲等发达国家在电力能耗数据分析领域的研究处于领先地位。这些国家的研究者们利用先进的技术和方法对电力能耗数据进行分析,探索出了一些新的模型和方法,如深度学习、神经网络等。这些国家还注重将研究成果应用到实际生产中,为电力企业提供更加智能化的决策支持。
程序上交给用户进行使用时,需要提供程序的操作流程图,这样便于用户容易理解程序的具体工作步骤,现如今程序的操作流程都有一个大致的标准,即先通过登录页面提交登录数据,通过程序验证正确之后,用户才能在程序功能操作区页面操作对应的功能。
程序操作流程图
首先前端通过Vue和axios发送HTTP请求到后端的登录接口。在后端接收登录请求的Controller会使用`@RequestParam Map<String, Object> params`来接收前端传递的用户参数,用户名和密码。然后后端根据接收到的参数创建一个查询条件封装对象MyBatis的EntityWrapper用于构建查询条件。接着在业务层,调用相应的service方法来查询数据库中是否存在匹配的用户信息。这个查询方法Login()会将前端传递的对象参数传递到后台的DAO层,进行数据库的交互操作。如果存在符合条件的用户,则会返回相关的用户信息。最后在后端控制器中将查询结果封装成响应体,通过`return R.ok().put("data", userService.selecView(ew))`将用户信息返回给前端。前端收到响应后,可以通过调用Vue、ElementUI等组件来渲染登录结果,例如显示用户信息或者跳转到相应的页面。
系统架构设计
系统架构设计是软件开发过程中至关重要的一环。首先是模型层(Model),模型层通常对应着数据库或者其他数据源,它负责与数据库进行交互,执行各种数据操作,并将处理后的数据传递给控制器层。模型层的设计应该简洁清晰,尽可能减少与视图和控制器的耦合,以提高代码的可维护性和可重用性。
其次是视图层(View)通常是通过网页、移动应用界面或者其他用户界面来展示数据。视图层与用户交互,接受用户的输入,并