一:半监督聚类
半监督聚类(semi-supervised clustering):传统的聚类学习任务是一种无监督学习任务,也即假设所有样本数据的簇标签未知。但是在某些学习任务中,用户具有某些领域的背景知识,也即约束信息。所以人们希望将这些领域知识应用到聚类任务中,所以这类学习任务称之为半监督聚类。半监督聚类可以分为:
- 广义的半监督聚类:在实际聚类任务中,相对于数据本身而言,数据的约束信息是更难以获取的,用户只能获取较为明显数据样本的标签,或只能得到施加在样本点之间的约束,所以这些信息称之为广义的半监督聚类
- 狭义的半监督聚类:它只限于针对样本点的约束信息
所以半监督聚类主要研究:如何利用少量的约束信息来得到更加准确的聚类结果,同时不仅利用约束样本提供的信息,而且考虑所有无约束样本集所隐含的结