Person_reID_baseline_pytorch 源码解析之 test.py

本文详细解析了PyTorch脚本test.py,该脚本用于加载训练好的模型,提取query和gallery图片的特征。首先,加载Resnet50模型并预处理数据,然后使用extract_feature函数进行特征提取,其中包括对输入张量进行L2范数归一化。最终,将特征保存为Matlab文件供evaluate_gpu.py使用,用于模型评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源码中有两个用于测试的脚本: test.py 和 evaluate_gpu.py 。其中, test.py 加载通过脚本 train.py 训练好的模型,实现对 query 和 gallery 图片的特征提取;本文对脚本 test.py 进行解析。

1. 加载模型和数据

首先需要载入训练好的模型,这里以基于 Resnet50 输出类别为 751 类的行人重识别模型 ft_net 为例。

model_structure = ft_net(751)
model = load_network(model_structure)

然后需要载入经过预处理的 gallery 和 query 数据集

data_transforms = transforms.Compose([
        transforms.Resize((256,128), interpolation=3),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
image_datasets = {
   
   x: datasets.ImageFolder( os.path.join(data_dir,x) ,data_transforms) for x in ['gallery','query']}
dataloaders = {
   
   x: torch.utils.data.DataLoader(image_datasets[x], batch_size=opt.batchsize,
                                             shuffle
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值