初学机器学习西瓜书的概要记录(一)机器学习基础知识篇(已完结)
初学机器学习西瓜书的概要记录(二)常用的机器学习方法篇(持续更新)
初学机器学习西瓜书的概要记录(三)进阶知识篇(待更)
文字公式撰写不易,随意学习,转载请注明!谢谢
(二)常用的机器学习方法篇
以下内容出自周志华老师亲讲西瓜书
4.1 决策树的基本流程
决策树基于“树”结构进行决策
- 每个内部结点对应某个属性上的测试
- 每个分支对应于该测试的一种可能结果(即该属性的某个取值)
- 每个叶结点对应于一个预测结果
学习过程:通过对训练样本的分析来确定“划分属性”(即内部结点所对应的属性)
预测过程:将测试示例从跟结点开始,沿着划分属性所构成的“判定测试序列”下行,直到叶结点
策略:分而治之,自根至叶的递归过程,在每个中间结点寻找一个"划分"属性
对当前某个结点进行划分时,确定递归停止的三种条件:
- 当前结点包含的样本全属于同一类别,无需划分;
- 当前属性集为空,或是所以样本在所有属性上取值相同,无法划分;
- 当前结点包含的样本集为空,不能划分。
4.2 信息增益划分
决策树的提出是收到信息论的启发,因此很多东西是以信息论的准测进行判断,而在信息论中最重要的一个量就是“熵”
信息熵是度量样本集合“纯度”最常用的一种指标,假定当前样本集合 D D D 中第 k k k 类样本所占的比例为 p k p_k pk,则 D D D 的信息熵定义为
E n t ( D ) = − ∑ k = 1 ∣ y ∣ p k l o g 2 p k Ent(D)=-\sum^{|y|}_{k=1}p_klog_2p_k Ent(D)=−k=1∑∣y∣pklog2pk
计算信息熵时约定:若 p = 0 p=0 p=0,则 p l o g 2 p = 0 plog_2p=0 plog2p=0
E n t ( D ) Ent(D) Ent(D) 的值越小,则 D D D 的纯度越高, E n t ( D ) Ent(D) Ent(D) 的最小值为 0,最大值为 l o g 2 ∣ y ∣ log_2{|y|} log2∣y∣
信息增益直接以信息熵为基础,计算当前划分对信息熵所造成的变化
离散属性 a a a 的取值: { a 1 , a 2 , . . . , a V } \{a^1,a^2,...,a^V\} { a1,a2,...,aV}
D v D^v Dv: D D D 在 a a a 上取值 = a v =a^v =av的样本集合
以属性 a a a 对数据集 D D D 进行划分所获得的新增增益为:
G a i n ( D , a ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(D,a)=Ent(D) - \sum_{v=1}^V{|D^v|\over |D|}Ent(D^v) Gain(D,a)=Ent(D)−v=1∑V∣D∣∣Dv∣Ent(Dv)
其中:
E n t ( D ) Ent(D) Ent(D) 为划分前的信息熵
∣ D v ∣ ∣ D ∣ {|D^v|\over |D|} ∣D∣∣Dv∣ 为第 v v v个分支的权重,样本越多越重要
E n t ( D v ) Ent(D^v) Ent(Dv) 为划分后的信息熵
4.3 其他属性的划分准则
信息增益如果只考虑了信息量的获得,一定程度上偏好了分支多的属性,因为分支越多,分到分支上样本数量就会越少。
信息增益:可对取值数目较多的属性有所偏好,有明显弱电,例如:考虑将“编号”作为一个属性
增益率:
G a i n r a t i o ( D , a ) = G a i n ( D , a ) I V ( a ) 其中 I V ( a ) = − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ l o g 2 ∣ D v ∣ ∣ D ∣ Gain_ratio(D,a)={Gain(D,a)\over IV(a)} \\ 其中 IV(a)=-\sum^V_{v=1}{|D^v|\over |D|} log_2{|D^v|\over |D|} Gainratio(D,a)=IV(a)Gain(D,a)其中IV(a)=−v=1∑V∣D∣∣Dv∣log2∣D∣∣Dv∣
其中 a a a 的可能取值数目越多(即 V V V 越大),则 I V ( a ) IV(a) IV(a) 的值通常即越大
启发式:先从候选划分属性中找出信息增益高于平均水平的,再从中选取增益率最高的
没有办法对信息增益和增益率做绝对正确的权衡,但对于分支多的情况被解决了,像上式这种情况叫做规范化。归一化是规范化的特殊形式,更多情况下规范化是将不可比较的东西变得可比较。
基尼指数(Gini index)
反应了从D中随机抽取两个样例,其类别标记不一致的概率
在多个类别 y y y 中,抽取样例某一个类 k k k 的概率为为 p k p_k pk ,再抽取样例为另一个类 k ′ ≠ k k' \not= k k′=k 的概率为 p k ′ p_k' pk′,如果这两个概率相乘很大,则证明这个集合 D D D 中不太“干净”
G i n i ( D ) = ∑ k = 1 ∣ y ∣ ∑ k ′ ≠ k p k p k ′ = 1 − ∑ k = 1 ∣ y ∣ p k 2 Gini(D)=\sum^{|y|}_{k=1}\sum_{k' \not= k}p_kp_k'=1-\sum^{|y|}_{k=1}p^2_k Gini(D)=k=1∑∣y∣k′=k∑pkpk′=1−k=1∑∣y∣pk2
G i n i ( D ) Gini(D) Gini(D) 越小,数据集 D D D 的纯度越高
属性 a a a 的基尼指数: G i n i i n d e x ( D , a ) = ∑ v = 1 V G i n i ( D v ) Gini_index(D,a)=\sum^V_{v=1}Gini(D^v) Giniindex(D,a)=∑v=1VGini(Dv)
在候选属性集合中,选取那个使划分后基尼指数最小的属性(CART算法中使用)
关键是如何去衡量,经过一个操作后,后面的东西比原来更“纯净”!
4.4 决策树剪枝
划分选择 vs. 剪枝
研究表明:划分选择的各种准则虽然对决策树的尺寸有较大影响,但对泛化性能的影响很有限
例如信息增益与基尼指数产生的结果,仅在约2%的情况下不同,剪枝方法和程度对决策树泛化性能的影响更显著,在数据带噪声时甚至可能将泛化性能提升25%
剪枝是决策树对付“过拟合”的主要手段
现阶段,在单决策树时,一定是需要剪枝的
为了尽可能正确分类训练样本,有可能造成分支过多(过拟合),可通过主动去掉一些分支来降低过拟合的风险
基本策略:
- 预剪枝:提前终止某些分支的生长
- 后剪枝:生成一颗完全树,再“回头”剪枝
剪枝过程中需评估剪枝前后决策树的优劣(详情见模型的评估)
4.5 缺失值的处理
现实生活中,经常会遇到属性值“缺失”现象,仅使用无缺失的样例? 是对数据的极大浪费
使用待缺失值的样例,需解决:
- 如何进行划分属性选择?
- 给定划分属性,若样本在该属性上的值缺失,如何进行划分?
基本思路:样本赋权,权重划分
5.1 支持向量机基本型
离正类和负类距离差不多的最好!
间隔与支持向量
最大间隔:寻找参数 w w w 和 b b b,使得 γ \gamma γ 最大
a r g m a x w , b 2 ∣ ∣ w ∣ ∣ s . t . y i ( w T x i + b ) ≥ 1 , i = 1 , 2 , . . . , m \underset{w,b}{argmax}{2\over ||w||} \\ s.t. \quad y_i(w^Tx_i+b)\geq1,i=1,2,...,m w,bargmax∣∣w∣∣2s.t.yi(wTxi+b)≥1,i=1,2,...,m
即
a r g m i n w , b 1 2 ∣ ∣ w ∣ ∣ 2 s . t . y i ( w T x i + b ) ≥ 1 , i = 1 , 2 , . . . , m \underset{w,b}{argmin}{1\over2} ||w||^2 \\ s.t. \quad y_i(w^Tx_i+b)\geq1,i=1,2,...,m w,bargmin21∣∣w∣∣2s.t.yi(wTxi+b)≥1,i=1,2,...,m
凸二次规划问题,能用优化计算包求解,但可以有更有效的办法(拉格朗日乘子法)
5.2 对偶问与解的特性
对偶问题
拉格朗日乘子法
第一步:引入拉格朗日乘子 a i ≥ 0 a_i \geq0 ai≥0得到拉格朗日函数
L ( w , b , a ) = 1 2 ∣ ∣ w ∣ ∣ 2 + ∑ i = 1 m a i ( 1 − y i ( w T x i + b ) ) L(w,b,a)={1\over 2}||w||^2+\sum^m_{i=1}a_i(1-y_i(w^Tx_i+b)) L(w,b,a)=21∣∣w∣∣2+