深度学习环境配置系列文章(一):专业名称和配置方案介绍

深度学习环境配置系列文章目录

第一章 专业名称和配置方案介绍
第二章 Anaconda配置Python和PyTorch
第三章 配置VS Code和Jupyter的Python环境
第四章 配置Windows11和Linux双系统
第五章 配置Docker深度学习开发环境



前言

人工智能的学习需要理论知识和编程能力同步开展。理论知识主要指的是高等数学、线性代数、概率论这些基础数学知识,这些是理解模型算法的先决条件。编程能力指的是编程语言、编程框架的运用,是实现算法、验证模型的手段,也是解决生活中实际问题的基础。两者相辅相成,缺一不可。理论精、编程弱,就如纸上谈兵,空有想法而不得验证;编程精而理论弱的人难有创新,现实中常被称为调参侠。本章主要介绍深度学习的环境配置,包括常见的专业名称介绍以及配置方案,是学习编程的第一步。


一、专业名称介绍

深度学习是实现人工智能的手段,本质上是一些数学算法。我们需要用编程的方式将这些数学公式编写进计算机,成为计算机解决问题的方法。不管是在编程环境配置,还是在编程开发过程中,我们经常会听到很多的专业名称。这里先对这些名词做解释,然后手把手地带领大家配置深度学习的开发环境。

1.Python

Python作为一门编程语言,这门语言的魅力和影响力已经远超C++、C#等编程语言前辈,被程序员誉为“美好的”编程语言。Python可以说是全能的,可以用于系统运维、图形处理、数学处理、文本处理、数据库编程、网络编程、Web编程、多媒体应用、PYMO引擎、黑客编程、爬虫编写、机器学习、人工智能等各种应用领域。如果想要深入学习Python,可以参考第三章的详细介绍和入门学习。

2.Anaconda

Anaconda是开源的Python发行版本,里面包含了Python、Conda(一个开源的软件包管理系统和环境管理系统)和各种用于科学计算的包,可以完全独立地使用,无须额外下载Python。
使用Anaconda的最大好处是它引入了虚拟环境的概念,每个环境都是相互隔离的,可以设置不同的Python版本和各种包,与系统不会发生冲突,可以方便地切换或删除整个环境。例如,当我们手头有两个Python项目:一个项目需要Python2版本,另一个需要Python3版本。如果同时在电脑中装载这两个不同版本的Python,就会产生冲突。但是,使用Anaconda可以创建两个隔离的虚拟环境,分别安装这两个版本的Python,以解决这个问题。Anaconda的安装方法详见2.2节。

3.PyTorch

PyTorch于2016年首次推出。在PyTorch之前,深度学习框架通常只注重速度或可用性,而不能兼顾二者。PyTorch将可用性和速度考虑结合在一起,它提供了一种命令式和Python编程风格,支持将代码作为模型,使调试变得容易。此外,它还支持GPU等硬件加速器。
PyTorch是一个基于Python 的库,它通过自动微分和GPU加速执行动态张量计算,同时保持与当前最快的深度学习库相当的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值