Kalman滤波与组合导航原理简介

如果信号受噪声干扰,为了从量测中恢复出有用信号而又要尽量减少干扰的影响,常常采用滤波器进行信号处理。使用经典滤波器时假定信号和干扰的频率分布不同,通过设计特定的滤波器带通和带止频段,实现有用信号和干扰的分离。但是,如果干扰的频段很宽,比如白噪声,在有用信号的频段范围内也必然会存在干扰,这时经典滤波器对滤除这部分干扰噪声无能为力。若有用信号和干扰噪声的频带相互重叠,信号处理时通常不再认为有用信号是确定性的,而是带有一定随机性的。对于随机信号不可能进行准确无误差的恢复,只能根据信号和噪声的统计特性,利用数理统计方法进行估计,并且一般采取某种统计准则使估计误差尽可能小。借用经典滤波器的术语,这种针对随机信号的统计估计方法也常常称为滤波器,或称为现代滤波器以区别于经典滤波器,但须注意经典滤波器和现代滤波器之间是有本质区别的。

Kalman滤波

早在1632年,伽利略(Galileo Galilei)就尝试用各种误差函数最小化的方法提出了估计理论问题。1801年,数学家高斯(Karl Gauss)将最小二乘估计法应用于谷神星的轨道跟踪和预测,取得了良好的效果。最小二乘估计以观测残差平方和最小作为估计准则,它不需要关于量测的任何统计信息,算法简单且实用性强,在参数估计领域获得了广泛的应用。但是,通常情况下最小二乘估计只能应用于静态参数估计,而不适用于动态系统的状态估计。

20世纪40年代初期,维纳(Norbert Wiener)开始将统计方法应用于通信系统和控制系统的研究中,提出了著名的维纳滤波理论。同一时期,柯尔莫哥洛夫(Andrey Kolmogorow)也进行了类似的研究。维纳滤波一种从频域角度出发设计滤波器的方法,它根据有用信号和干扰信号的功率谱特性,通过构造和求解维纳—霍夫(Wiener-Hopf)方程得到最佳滤波器的传递函数,给出了最小均方误差意义下的稳态解。但是,在一般情况下求解维纳—霍夫方程极为困难,甚至是不可能的。此外,维纳滤波仅适用于低维平稳随机过程,人们试图将它推广到高维和非平稳情况,但都因无法突破计算上的困难而难以实用,这严重限制了维纳滤波的普及。维纳滤波在历史上有着非常重要的作用和独特的地位,它首次将数理统计理论和线性系统理论有机结合起来,形成了对随机信号进行估计的新理论,虽然维纳滤波不适合用于状态估计,但是它在信号处理和通信理论中依然十分有用。

1960年,Rudolf Kalman将控制系统状态空间的概念引入随机估计理论中,建立了随机状态空间模型,利用了随机状态方程、量测方程以及激励白噪声的统计特性,构造估计算法对随机状态进行滤波估计,后来被称为Kalman滤波。在Kalman滤波中,所有利用的信息都是时域内的参量,它不但可以应用于一维平稳的随机过程,还可应用于多维非平稳过程,这就避免了Wiener滤波器设计的困境。Kalman滤波是一套由数字计算机实现的实时递推算法,它以随机系统的量测作为滤波器的输入,滤波器的输出是对系统状态作最优估计,这一特征与确定性控制系统中的状态观测器非常相似。

在Kalman滤波器出现以后,估计理论的发展基本上都是以它为基础的一些推广和改进。

20世纪60年代,卡尔曼滤波在美国的太空计划中获得了成功的应用,但是由于当时计算机字长较短,滤波器在实现过程中有时会出现一些问题,即计算机求解均方误差阵时容易出现无穷大情况,导致滤波发散。平方根滤波是一种在数学上增加卡尔曼滤波精度的方法,Potter为“阿波罗”太空计划开发了第一个平方根滤波算法,它推动了后来一些其他平方根滤波方法的研究,比如Bierman提出的U-D分解滤波。平方根滤波精度性能的提升是以增加计算量为代价的,目前,随着计算机硬件技术的发展,普遍采用双精度浮点数进行计算和存储,多数情况下不必再像过去那样过于关注和当心数值问题了。

卡尔曼滤波是基于线性系统的估计方法,一般只能适用于线性或者非常接近于线性的非线性问题,对于非线性比较明显的问题,卡尔曼滤波往往不能给出满意的结果,需要采用非线性估计方法。最为广泛采用的非线性估计方法是EKF(扩展卡尔曼滤波),它通过泰勒级数展开,对非线性函数进行线性近似。同样,以泰勒级数展开为基础,若保留二阶项则称为二阶卡尔曼滤波方法,理论上二阶滤波降低了EKF的线性化误差,会得到比EKF稍好的估计性能,但这是以高复杂性和计算量为代价的。

随着系统规模的不断增大,如何有效处理多个传感器测量信息的问题被提出并得到了广泛的研究。传统的方法是采用集中式Kalman滤波,将所有测量信息送到中心处理器进行集中处理,虽然它的处理结果是全局最优的,但是这种处理方式存在通信负担重、计算量大和容错性能差等缺点。Speyer从分散控制的角度提出了多处理器结构的思想,每个传感器都有自己的处理器,处理包括自身在内的所有传感器的测量信息,得到的估计结果既是局部最优的也是全局最优的。Willsky对Speyer的方法进行了改进,提出了一个中心处理器(主)加多个局部处理器(子)的结构方式,主处理器完成各个子处理器结果的合成,各子处理器间不要求通信联系,因而是相互独立的。Carlson对分散滤波算法做了重大改进,提出了联邦滤波算法,采用信息分享原理,把全局状态估计信息和系统噪声信息分配给各个子滤波器,且不改变子滤波器算法的形式,联邦滤波具有实现简单、信息分享方式灵活、容错性能好的诸多优点。

组合导航

将运载体从起始点引导到目的地的技术或方法称为导航,导航系统提供的信息主要有姿态、方位、速度和位置,甚至还包括加速度和角速率,这些信息可用于运载体的正确操纵和控制。随着技术的发展,导航系统的种类越来越多,比如惯导系统、卫星导航系统、磁罗盘、里程仪/多普勒测速仪/空速计、气压高度表/雷达高度表、地标点/地图匹配等。这些导航系统各有特色,优缺点并存,比如惯导系统的优点是自主性强、动态性能好、导航信息全面且输出频率高,但其缺点是误差随时间不断累积,长期精度差;卫星导航系统的优点是精度高、误差不随时间增大,缺点是导航信息不够全面、频带窄、信号容易受到干扰、在室内等环境下接收不到卫星信号而无法使用。在许多对导航性能要求苛刻的任务中,无论是精度要求高还是可靠性要求高,任何单一的导航系统可能都无法满足要求,这就需要使用多种导航系统同时对运载体进行导航信息测量,再对所有测量信息作综合处理(包括检测、结合、相关和估计),从而得到更为准确和可靠的导航结果。这种对多种导航信息作综合处理的技术就称为组合导航技术。从上述对惯导和卫星导航的优缺点描述中可以看出,两者性能具有非常强的互补性,因而惯性/卫星组合导航被公认为是最佳的组合导航方案。

组合导航系统的设计一般都采用Kalman滤波器,Kalman滤波器最早和最成功的应用实例便是在导航领域。1960年卡尔曼在美国国家航空航天局埃姆斯研究中心(NASA Ames Research Center)访问时,Stanley Schmidt发现卡尔曼滤波方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗登月飞船的导航系统便使用了卡尔曼滤波器,通常认为Schmidt首次实现了Kalman滤波器。此外,美国在航天飞机、潜艇和无人航空航天飞行器(比如巡航missile)上均使用了Kalman滤波器。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金戈鐡馬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值