357 计算各个位数不同的数字个数(数学)

该博客介绍了一个计算在0到10^n范围内,各位数字都不相同的整数个数的问题。通过分析得知,当有n位数字时,第一位有9种选择,后续每位依次减少1种选择。博主给出了使用动态规划的Python代码实现,通过一个列表dp存储n位数字的不同组合数,并最终返回结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 问题描述:

给定一个非负整数 n,计算各位数字都不同的数字 x 的个数,其中 0 ≤ x < 10 ^ n 。

示例:

输入: 2
输出: 91 
解释: 答案应为除去 11,22,33,44,55,66,77,88,99 外,在 [0,100) 区间内的所有数字。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-numbers-with-unique-digits

2. 思路分析:

分析题目可以知道n最大不能超过10才是有意义的(数字范围为0~9)对于当前的n位数字我们考虑从1~n位数对应的数目,例如当前有4位数字,那么第一位可能的有9种选择,第二位也是有9种选择,第三位有8种选择,第四位有7种选择,所以4位数字最多可能有9 * 9 * 8 * 7个各个位都不同的数字,我们可以计算出1~n位数对应的数目然后累加起来即可,并且最后需要加上0这个数字,可以使用一个列表dp来记录当前n位数字可能的数目,最后遍历这个列表累加结果即可。

3. 代码如下:

class Solution:
    def countNumbersWithUniqueDigits(self, n: int) -> int:
        if n == 0: return 1
        n = min(n, 10)
        dp = [0] * (n + 1)
        dp[1] = 9
        for i in range(2, n + 1):
            # dp[i]表示n位数字的数目,(11 - i)可以通过具体的例子得到
            dp[i] = dp[i - 1] * (11 - i)
        res = 0
        for i in range(1, n + 1):
            res += dp[i]
        # 前面计算的是1~10^n最后需要加上0这个数字
        return 1 + res


if __name__ == '__main__':
    print(Solution().countNumbersWithUniqueDigits(2))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值