算法:斐波那契数列通项公式推导

这篇博客介绍了如何使用生成函数法推导斐波那契数列的通项公式,并详细阐述了从构造函数到求解过程,最终得出斐波那契数列的时间复杂度为O(n)

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9-17_算法实验报告

斐波那契数列

已知:
f(n)={ f(n−1)+f(n−2);(n>2)1;(n=1,n=2) f(n) = \begin{cases}f(n-1) + f(n - 2);(n > 2)\\ 1;(n = 1, n = 2)\end{cases} f(n)={ f(n1)+f(n2)(n>2)1(n=1,n=2)
请使用 生成函数法 求该函数的时间复杂度。

解答

对于斐波那契数列,已知:
f(n)=f(n−1)+f(n−2);(n>2) f(n) = f(n - 1) + f(n-2);(n > 2) f(n)=f(n1)+f(n2)(n>2)
构造一个函数为:
G(x)=f(1)x+f(2)x2+...+f(n)xn+... G(x) = f(1)x + f(2)x^2 + ... + f(n)x^n+ ... G(x)=f(1)x+f(2)x2+...+f(n)xn+...
则有:
G(x)−xG(x)−x2G(x)=f(1)x+f(2)x2+...+−f(1)x2−f(2)x3−...−−f(1)x3−f(2)x4−...− G(x) - x G(x) - x^2G(x) = f(1)x + f(2)x^2 + ...+ \\ - f(1)x^2 - f(2)x^3 - ... - \\ - f(1)x^3 - f(2)x^4 - ... - \\ G(x)xG(x)x2G(x)=f(1)x+f(2)x2+...+f(1)x2f(2)x3...f(1)x3f(2)x4...
整理之后可得:
G(x)−xG(x)−x2G(x)=f(1)x+(f(2)−f(1))x2+(f(3)−f(2)−f(1))x3+...+ G(x) - x G(x) - x^2G(x) = f(1)x + (f(2)-f(1))x^2 + (f(3)-f(2)-f(1))x^3 + ... + G(x)xG(x)x2G(x)=f(1)x+

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值