pytorch学习笔记三:torch.nn下常见的几个损失函数详解

本文详细介绍了PyTorch中的几种常见损失函数,包括L1Loss、MSELoss、交叉熵损失(CrossEntropyLoss)、二进制交叉熵损失(BCELoss)和BCEWithLogitsLoss。讨论了损失函数中关键参数的作用,并通过实例展示了如何使用这些函数以及它们的计算结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       在盘点常见损失函数之前,有必要先说一下在很多的损失函数中都出现的三个参数,也即size_average,reduce以及reduction,并且它们三个之间还存在一定的关系。

  • size_averagebool类型;默认情况下,如果只有一个batch,每个batch有多个元素,那么误差计算结果是这个batch中多个元素的平均值;如果是有多个batch,然后每个batch有多个元素,那么误差计算的结果是将每个batch的平均值放到一块再求多个batch的平均值;如果把这个参数设置为False,那么只需要将计算平均值换成计算和即可,其他完全一样;默认该参数值为True;但是如果 reduce参数被指定为False,那么这个参数将被忽略,也即不起作用。

  • reducebool类型;默认情况下,计算结果的形式会由size_average来决定,要么是求平均值,要么是求和,也即返回的是标量;但是如果 reduce参数被设置

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耐心的小黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值