最小相位系统与非最小相位系统

本文探讨了最小相位与非最小相位系统的定义、特点及影响,指出最小相位系统相角变化范围最小,易于设计控制器,而非最小相位系统响应缓慢,可能造成系统不稳定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义:在s右半平面既无零点也无极点的传递函数,最小相位传递函数;反之,在右半平面有零点或极点的传递函数称为非最小相位传递函数。

很明显,右半平面存在极点,系统一定不稳定,右半平面存在零点,系统可能不稳定(我们从系统的根轨迹中可以看出:极点轨迹总是趋近于零点,因此右半平面的零点有使系统极点趋向右半平面的趋势,可能造成系统不稳定);因此可以看出,最小相位系统是稳定的,而非最小相位系统可能不稳定。

特点在具有相同幅值特性的系统中,最小相位系统的相角变化范围是最小的;任何非最小相位系统的相角变化范围都要大于最小相位系统;最小相位系统的传递函数可以由单一的幅值曲线唯一确定,幅值特性与相角特性具有一一对应关系;非最小相位系统则没有这种特性;

例如:
G1(jw)=1+jwT1+jwT1,G2(jw)=1−jwT1+jwT1,0&lt;T&lt;T1G_1(jw)=\frac{1+jwT}{1+jwT_1}, G_2(jw)=\frac{1-jwT}{1+jwT_1},0&lt;T&lt;T_1G1(jw)=1+jwT11+jwT,G2(jw)=1+jwT11jwT,0<T<T1
上式表示的两个系统,当角频率从0到无穷变化时,G1G1G1G2G2G2具有相同的幅频特性,但是G2G2G2的相角变化范围更大(),属于非最小相位环节。取T=0.001s,T1=0.01sT=0.001s,T_1=0.01sT=0.001s,T1=0.01s则bode图如下所示:
G1G_1G1
在这里插入图片描述
G2G_2G2

在这里插入图片描述

拓展

非最小相位情况产生的原因,一是系统包含有非最小相位元件(带有时滞特性/延时,相位滞后),二是系统的内部回路不稳定(有正根)

非最小相位环节对系统造成的影响

非最小相位系统响应缓慢(原因在于,具有相同幅频特性的情况下,非最小相位系统具有更大的相角变化范围,这带来了频域上的相位滞后,表现在时域上即为阶跃响应稳态值相同的情况下,上升时间和调节时间更长);

最小相位系统因为相移小,在实际工程应用中表现为同频率输出信号在时间上能够很快的跟踪上输入,说白了就是时延小。这样的系统就比较容易设计控制器,调节效果一般也都不错。

再来说非最小相位系统,非最小相位系统因为相位差别大,往往会造成输出的信号的时延增大,时域响应由于存在不稳定的零点,甚至会出现反向效应,这样的系统想设计可实现的控制器,就比较困难了。

反向效应示例
测试如下两个系统的单位阶跃响应
在这里插入图片描述

在这里插入图片描述
可以看出非最小相位系统对输入的各个频段的相位响应均比最小相位系统来的迟缓,上述例子在起始阶段甚至出现了反向效应(幅值为负),这使得非最小相位系统的控制器设计变得复杂。

注意

频域的稳定裕度判稳方法只对最小相位系统使用,对非最小相位系统进行稳定性判别时应使用奈奎斯特图法,而不是波德图法

区分

对于一个最小相位环节,在w趋向于无穷时,相角趋向于−90∗(分母阶数−分子阶数)-90*(分母阶数-分子阶数)90(),非最小相位系统则不是(G2G2G2中含有负数项);但是两者的幅频特性曲线在w趋向于无穷时斜率均等于20∗(分子阶数−分母阶数)dB/十倍频程20*(分子阶数-分母阶数)dB/十倍频程20()dB/(传递函数中的负数项不影响幅值);因此为了确定系统是不是最小相位的,既需要检查幅值曲线的高频渐近线斜率,又要检查w趋于无穷时的相角。

系统含有非最小相位环节的解决办法

加入校正环节,改善系统的相角特性曲线。

1. 频率响应的物理意义是指系统对不同频率的输入信号的响应情况。在频域中,系统的频率响应是由系统的传递函数(或称为系统函数)所描述的,它可以告诉我们系统对不同频率的输入信号的增益和相位变化情况。频率响应通常以幅度-频率和相位-频率两种形式来表示,可以用于分析和设计滤波器、控制系统等。 2. s平面几何法是一种分析二阶系统响应的方法,它利用s平面上的极点和零点的位置来解释系统的稳定性和响应特性。具体来说,当二阶系统的传递函数写成标准形式时,可以根据s平面上极点和零点的位置关系来判断系统的稳定性、共振频率、阻尼比等参数,从而对系统的响应特性进行分析和设计。 3. 最小相移系统、最小相移系统与全通系统的系统函数零、极点分布:最小相移系统是指在保持系统幅频响应不变的条件下,使系统相位响应尽可能接近零的系统。最小相移系统则相反,它们在保持系统幅频响应不变的条件下,使系统相位响应更为复杂。全通系统则是指在保持系统幅频响应不变的条件下,尽可能使系统相位响应接近全通(即相位响应为常数)的系统。 对于这三种系统,它们的系统函数的零点和极点分布也有所不同。最小相移系统的系统函数只有实轴上的零点和极点,且它们是成对出现的;最小相移系统的系统函数则可能存在虚轴上的零点和极点,且它们也是成对出现的;全通系统的系统函数则同时具有实轴和虚轴上的零点和极点,且它们也是成对出现的。在系统分析和设计中,这些零点和极点的位置和数量都对系统的响应特性和稳定性有重要影响。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值