英文科技论文的撰写方法

本文详述了一种深度学习模型的构建过程,包括模块化的网络设计、整体架构的搭建以及实验策略。首先,从模块1到模块3逐步构建网络,接着优化布局和逻辑。实验部分涉及数据集选择、超参数调优、模块对比和与其他方法的性能比较。针对现有方案的不足,本文提出新的解决方案,并进行了消融实验验证。结论中,强调了方法的优势及未来改进方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、方法部分:模块加整体框架的搭建

(1)模块1
(2)单元2
(3)模块3
(4)整体的网络架构

:第遍先堆东西,第遍改整体的布局,第遍改逻辑:为什么,怎么做(公式化),有什么用,第遍找别人帮你改:自己往往是有先验知识的,第遍:查看图标,表题和论文是否对应; 第遍:资源允许的情况下过一遍语法Grammarly

2、introduction(7段)

(1)引出所研究问题的必要性,引出所使用的数据、以及目前的挑战
(2)通过调研归纳出目前解决此问题的“方案” 有几种:简要介绍如何做
(3)方案1:such as
(4)方案2:such as(列举的同时需要做简单的分析,一定要先扬后抑)
(5)总结上述的方案,虽然取得了进步但仍然存在一些问题:①… ②… ③…
(6)针对以上问题,本文的贡献如下: ①… ②… ③…
(7)本文的整体布局:从第二章开始写

3、相关工作(4段)

总结相关工作包括那几部分:

(1)相关工作1:第一个问题,第一个模块,such as 参考文献,用于实验部分的模块1对比
(2)相关工作2:第二个问题,第二个模块,such as 参考文献,用于实验部分的模块2对比
(3)相关工作3:

:需要列举之后进行分析,一定要先扬后抑。然后总结出应该怎么做,实则对应的是自己的方法。

4、实验

(1)实验数据、试验设备,参数的设定,代码的上传URL;
(2)超参数选择:需要在所有的数据集上做;
(3)模块对比:尽量选择第一个数据集做(随机性);
(4)消融实验:同上;
(5)和其他方法的对比:至少三个,需要在所有数据集上做,第一个数据集详细分析,后面的简略分析即可。(需要做异常值分析,好的坏的都要分析,尽量避免表达表格上的数字)

5、结论

(1)整体的总结一下自己的方法的结果、能够解决什么问题;
(2)提出方案的一个缺陷和以后要改进的方向。

注:尽量避免And开头。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ru-willow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值