Pytorch使用手册- PyTorch 中 non_blocking 和 pin_memory() 的使用指南(专题十一)

1. 介绍

在许多 PyTorch 应用中,将数据从 CPU 转移到 GPU 是非常基础的操作。用户理解在设备间传输数据时最有效的工具和选项非常重要。本教程将重点讲解两种在 PyTorch 中进行设备间数据传输的关键方法:pin_memory() 和带有 non_blocking=True 选项的 to()

1.1 你将学习到的内容:

通过异步传输和内存固定,可以优化张量从 CPU 到 GPU 的传输。然而,有一些重要的注意事项:

  • 使用 tensor.pin_memory().to(device, non_blocking=True) 可能会比直接使用 tensor.to(device) 慢最多两倍。
  • 一般来说,tensor.to(device, non_blocking=True) 是提高传输速度的有效选择。
  • 虽然 cpu_tensor.to("cuda", non_blocking=True).mean() 可以正确执行,但尝试 cuda_tensor.to("cpu", non_blocking=True).mean() 会导致错误的输出。

1.2 前言

本教程中报告的性能是基于用于构建该教程的系统。尽管结论适用于不同的系统,但具体的观察结果可能会有所不同,特别是在较旧的硬件上。

YOLOv8是Ultralytics公司开发的一个目标检测图像分割模型框架。在YOLOv8的训练过程中,`pin_memory`是一个重要的参数,特别是在使用PyTorch进行数据加载时。 ### 什么是`pin_memory` `pin_memory`是`torch.utils.data.DataLoader`中的一个参数。将其设置为`True`可以将数据加载到锁页内存(pinned memory)中。锁页内存是指那些不会被操作系统换出到磁盘的内存区域。使用锁页内存可以加快数据传输速度,特别是在GPU上进行计算时。 ### `pin_memory`的作用 1. **加速数据传输**:将数据加载到锁页内存中可以加快CPU到GPU的数据传输速度。这是因为锁页内存与GPU之间的数据传输速度比普通内存快。 2. **减少延迟**:在训练过程中,数据传输的延迟会直接影响训练速度。使用锁页内存可以减少这种延迟,从而提高整体训练效率。 ### 如何使用 在YOLOv8中,通常会在数据加载器中设置`pin_memory`参数。以下是一个示例: ```python from torch.utils.data import DataLoader # 假设我们有一个自定义的数据集类MyDataset train_dataset = MyDataset(...) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4, pin_memory=True) # 在训练循环中使用train_loader for images, targets in train_loader: images = images.to(device, non_blocking=True) targets = targets.to(device, non_blocking=True) # 训练代码 ``` ### 注意事项 - **内存消耗**:使用锁页内存会增加内存消耗,因为锁页内存不能被操作系统换出到磁盘。因此,在内存有限的情况下,需要谨慎使用。 - **平台依赖**:`pin_memory`在某些平台上可能效果不明显,特别是在CPU上进行计算时。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI专题精讲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值