题目描述
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
上图为 8 皇后问题的一种解法。
给定一个整数 n,返回 n 皇后不同的解决方案的数量。
示例:
输入: 4
输出: 2
解释: 4 皇后问题存在如下两个不同的解法。
[
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."],
["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/n-queens-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
白话题目:
好多书上或者C语言教材中提及到的8皇后问题的一种扩展,输入N作为多少维的皇后问题,输出一共有多少种解,题目很明确。
小小的前提条件就是皇后之间不能互相攻击,皇后之间攻击的条件时同行、同列、同斜线都是可以互相打击的。女人何苦难为女人。
算法:
(1)输入简单的N就好
(2)我打算用回溯法处理,
就是没一行尝试能够放置的位置。
//1,边界,n个皇后放完了
//2,判定一个皇后是否能够放下的条件:行,列,正反斜线都不能有其他的皇后存在
//3,回溯标志,行数,也是皇后数量,每行肯定有一个皇后
//4,如何快速判断 行,列,正反斜线 是否有其他的皇后
先手动的以4皇后为例
关键的函数判断行列斜线是否满足
(pRet[row][i] == 'Q') || (pRet[i][col] == 'Q')
斜线:
由于是一行行的看,斜线就检查左上与右上就行
详细解释关注 B站 【C语言全代码】学渣带你刷Leetcode 不走丢 https://www.bilibili.com/video/BV1C7411y7gB
C语言完全代码
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
/**
* Return an array of arrays of size *returnSize.
* The sizes of the arrays are returned as *returnColumnSizes array.
* Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().
*/
//方法一:回溯法
//1,边界,n个皇后放完了
//2,判定一个皇后是否能够放下的条件:行,列,正反斜线都不能有其他的皇后存在
//3,回溯标志,行数,也是皇后数量,每行肯定有一个皇后
//4,如何快速判断 行,列,正反斜线 是否有其他的皇后
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
//函数一:判断当前位置 row,col 是否能够放皇后
bool judgeQueenValid(char** pRet, int n, int row, int col)
{
bool bRet = true; //默认 行
int i = 0;
int j = 0;
//1,行、列判断
for (i = 0; i < n; i++)
{
if ((pRet[row][i] == 'Q') || (pRet[i][col] == 'Q'))
{
bRet = false;
return bRet;
}
}
int k=1;
//2,正斜线判断 i = MAX(row - col, 0), j = MAX(col - row, 0)这个地方比较好玩
for (i =row , j =col ; (i -k>= 0) && (j-k >=0);k++ )
{
if (pRet[i-k][j-k] == 'Q')
{
bRet = false;
return bRet;
}
}
k=1;
//3,反斜线判断
for (i =row , j =col ; (i -k>= 0) && (j+k <n);k++ )
{
if (pRet[i-k][j+k] == 'Q')
{
bRet = false;
return bRet;
}
}
return bRet;
}
//函数三:回溯处理
bool backTrackQueen(char** pRet, int n, int* returnSize, int row)
{
int i = 0;
int j = 0;
bool bValid = false;
//1,边界处理
if (row == n)
{
// 成功找到一个答案
*returnSize += 1;
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
printf("%c ",pRet[i][j]);
}
printf("\n");
}
printf("--------------------\n");
return true;
}
//2,回溯处理
for (i = row; i < n; i++)
{
bValid = false;
for (j = 0; j < n; j++)
{
//判断当前位置是否能够放皇后
if (judgeQueenValid(pRet, n, i, j))
{
bValid = true;
pRet[i][j] = 'Q';
backTrackQueen(pRet, n, returnSize, i + 1);//一层层的近
//3,回退处理,出来的时候,把这个的i,j变成.
bValid = false;
pRet[i][j] = '.';
}
}
//4,任何一行如果放不下皇后,则该条路不成立,返回上一层
if (!bValid)
{
return false;
}
}
return false;
}
int totalNQueens(int n)
{
int i = 0;
int j = 0;
char** pRet = NULL; //想想成二维数组的意思,行地址空间
int iRetSize = 0;
//1,初始化 几位的空间地址
pRet = (char**)malloc(sizeof(char*) * n);
memset(pRet, 0x00, sizeof(char*) * n);
//0x00,一个字节
//0,根据编译器,默认作为int,4或者8个字节
for (i = 0; i < n; i++)
{
pRet[i] = (char*)malloc(sizeof(char) * (n + 1));
for (j = 0; j < n; j++)
{
pRet[i][j] = '.';
}
pRet[i][j] = '\0';
}
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
printf("%c ",pRet[i][j]);
}
printf("\n");
}
printf("--------------\n");
//2,回溯函数,开始你的表演,从0行开始
backTrackQueen(pRet, n, &iRetSize, 0);
//3,返回
return iRetSize;
}