文章目录
1. 什么是交叉验证(cross validation)
交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成4份,其中⼀份作为验证集。然后经过4次 (组)的测试,每次都更换不同的验证集。即得到4组模型的结果,取平均值作为最终结果。⼜称4折交叉验证。
1.1 分析
我们之前知道数据分为训练集和测试集,但是为了让从训练得到模型结果更加准确。做以下处理
- 训练集:训练集+验证集
- 测试集:测试集
1.2 为什么需要交叉验证
交叉验证⽬的:为了让被评估的模型更加准确可信
问题:这个只是让被评估的模型更加准确可信,那么怎么选择或者调优参数呢?
2 什么是⽹格搜索(Grid Search)
通常情况下,有很多参数是需要⼿动指定的(如k-近邻算法中的K值),这种叫超参数。但是⼿动过程繁杂,所以需要 对模型预设⼏种超参数组合。每组超参数都采⽤交叉验证来进⾏评估。最后选出最优参数组合建⽴模型。
3 交叉验证,⽹格搜索(模型选择与调优)API:
sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
- 对估计器的指定参数值进⾏详尽搜索
- estimator:估计器对象
- param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
- cv:指定⼏折交叉验证
- fit:输⼊训练数据
- score:准确率
- 结果分析:
- bestscore__:在交叉验证中验证的最好结果
- bestestimator:最好的参数模型
- cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果
4 鸢尾花案例增加K值调优
#获取数据
from sklearn.datasets import load_iris
#数据基本处理(训练集和测试集)
from sklearn.model_selection import train_test_split