自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(350)
  • 收藏
  • 关注

原创 【自然语言处理与大模型】大模型Agent四大的组件

Agent System Overview:大模型Agent四大的组件

2025-05-26 23:54:57 837 2

原创 【自然语言处理与大模型】大模型(LLM)基础知识⑤

如何保证大模型生成内容的合规性?如何对超长文本进行微调训练?

2025-05-26 23:27:09 1134

原创 【自然语言处理与大模型】向量数据库:Milvus使用指南

Milvus使用指南

2025-05-19 01:20:48 589 1

原创 【自然语言处理与大模型】向量数据库:Chroma使用指南

Chroma使用指南

2025-05-18 23:36:38 604

原创 【自然语言处理与大模型】向量数据库技术

介绍了向量数据库技术是什么,并推荐了4个目前使用最广的向量数据库。

2025-05-18 22:28:00 1355

原创 【学习心得】英伟达的诸多显卡性能对比

整理了一些常见英伟达NVIDIA显卡的四个参数。

2025-05-17 18:49:43 407 1

原创 【自然语言处理与大模型】大模型(LLM)基础知识④

(1)微调主要用来干什么?(2)为什么不选择直接使用微调来实现专业领域问答系统?(3)实际应用中如何实现专业领域问答呢?(4)大模型应用落地的三个方向是?(5)哪些模型参数来控制对话生成的自由度和多样性?(6)RAG的优点有哪些?(7)RAG的缺点有哪些?(8)RAG的核心优势与核心痛点是什么?(9)什么是模态?什么是多模态?(10)多模态有哪些应用场景?

2025-05-17 18:48:26 1026

原创 【自然语言处理与大模型】Windows安装RAGFlow并接入本地Ollama模型

本文介绍了如何安装RAGFlow,并展示了简单的RAG如何创建并使用。

2025-05-17 00:42:32 1344

原创 【学习心得】Jupyter 如何在conda的base环境中其他虚拟环境内核

如何在jupyter中使用conda虚拟环境?

2025-05-16 15:34:32 478

原创 【自然语言处理与大模型】Windows安装Dify并接入本地Ollama模型

本文还详细介绍了如何在本地通过Docker部署Dify,并配置Ollama模型以快速启动一个聊天助手。

2025-05-16 01:24:19 948

原创 【学习心得】2025年Docker Desktop安装记录

2025年Docker Desktop安装记录

2025-05-15 23:28:02 2416 1

原创 【学习心得】WSL2安装Ubuntu22.04

WSL2安装Ubuntu22.04并支持图形化+远程连接

2025-05-15 21:54:08 664

原创 【自然语言处理与大模型】LlamaIndex的词嵌入模型和向量数据库

嵌入模型(Embedding Model)的本质在于将高维的、稀疏的数据转换为低维的、密集的向量表示,使得这些向量能够在数学空间中表达原始数据的语义信息。降维表示:嵌入模型能够将文本、图像或其它类型的数据映射到一个连续的向量空间中,这个过程通常伴随着维度的降低。例如,一个包含大量词汇的文本可以通过嵌入模型被表示为固定长度的向量。捕捉语义关系:在生成的向量空间中,相似或相关的概念在空间中的距离较近,而不相关或相异的概念则距离较远。这意味着嵌入模型不仅能捕捉单个词语或数据点的含义,还能反映它们之间的语义关系。

2025-05-06 23:57:16 705 2

原创 【学习心得】PyCharm远程连接OpenBayes贝式算力云平台

本文详细记录一下如何使用PyCharm远程连接OpenBayes贝式算力云平台,并使用安装llamafactory

2025-05-06 04:23:09 448

原创 【学习心得】好用算力平台推荐OpenBayes“贝式计算”

好用算力平台推荐OpenBayes“贝式计算”

2025-05-06 01:55:23 364

原创 【自然语言处理与大模型】LlamaIndex的数据连接器和对话引擎

RAG的通用流程?LlamaIndex如何实现RAG?

2025-05-05 23:59:54 519 2

原创 【学习心得】Xtuner模型qlora微调时错误记录

记录使用Xtuner来微调模型的时候踩的坑

2025-05-05 10:37:24 784 1

原创 【自然语言处理与大模型】使用Xtuner进行模型合并与导出

轻松地将在 Xtuner 中训练得到的模型转换为可以在 Hugging Face 平台上使用的格式,方便后续的应用

2025-05-03 23:57:47 614

原创 【学习心得】魔塔(ModelScope)和抱抱脸(Hugging Face)下载模型小细节

介绍常用的两种在模型社区如魔塔(ModelScope)和抱抱脸(Hugging Face),下载预训练模型的方法,然后说明各种方法里面的小细节。

2025-05-03 11:56:50 952

原创 【自然语言处理与大模型】使用Xtuner进行QLoRA微调实操

手把手演示如何使用Xtuner对模型进行微调训练,包括数据准备、训练命令执行及训练过程中的监控技巧。最后,在完成微调之后,本文还将介绍如何对微调结果进行简单对话测试。

2025-05-02 23:57:50 1513 2

原创 【学习心得】MongoDB报错“Error: couldn‘t connect to server 127.0.0.1:27017, connection attempt failed: ...”

MongoDB报错“Error: couldn't connect to server 127.0.0.1:27017, connection attempt failed: ...”

2025-05-02 14:36:18 416 1

原创 【自然语言处理与大模型】如何获取特定领域的微调数据集?

在少量原始对话样本的基础上,通过调用大模型 API(如 GLM 系列) 自动生成大量风格一致、语义合理的对话数据,用于扩充训练集或提升下游任务表现。

2025-04-30 23:58:29 583

原创 【自然语言处理与大模型】大模型意图识别实操

本文先介绍一下大模型意图识别是什么?如何实现?然后通过一个具体的实战案例,详细演示如何运用大模型完成意图识别任务。最后,对大模型在该任务中所发挥的核心作用进行总结归纳。

2025-04-30 15:19:05 2342

原创 【自然语言处理与大模型】LangChain大模型应用框架入门②

本文介绍LangChain的另一个重要组件——提示词模板(Prompt Template)组件,其中的两个最常用的PromptTemplate和ChatPromptTemplate

2025-04-29 23:48:58 600

原创 【自然语言处理与大模型】LangChain大模型应用框架入门①

文章介绍LangChain的安装,学习模型组件的使用。

2025-04-29 23:29:51 1071

原创 【自然语言处理与大模型】用OpenCompass评估自己微调的模型

用OpenCompass评估自己微调的模型。OpenCompass评估入门有哪些坑。

2025-04-27 05:20:18 1287 1

原创 【学习心得】最新!使用PyCharm 2025.1 远程开发教程,附带端口转发教程!

最新!使用PyCharm 2025.1 远程开发教程,附带端口转发教程!

2025-04-27 00:43:37 1872 1

原创 【自然语言处理与大模型】vLLM部署本地大模型②

vLLM部署本地大模型的常用功能:分布式部署和在线量化推理

2025-04-26 03:43:49 1725

原创 【自然语言处理与大模型】使用LMDeploy来进行大模型的高效推理

使用LMDeploy来进行大模型的基础推理、在线量化推理、分布式推理。

2025-04-26 01:57:56 988

原创 【自然语言处理与大模型】离线环境的单机多卡分布式微调或推理存在的问题

服务器上没有网会对LLaMA-Factory的分布式训练产生什么影响?

2025-04-25 04:05:35 509

原创 【自然语言处理与大模型】大模型参数规模与部署配置调查2025第一季度

大模型参数规模与部署配置调查2025第一季度。统计可知参数规模在32B到78B之间的模型是目前的主流。

2025-04-23 23:08:43 778

原创 【自然语言处理与大模型】如何知道自己部署的模型的最大并行访问数呢?

如何知道自己部署的模型的最大并行访问数呢?预估模型推理时显存占用,计算剩余显存量支持的最大并行访问数。

2025-04-22 11:26:59 1506

原创 【自然语言处理与大模型】模型压缩技术之蒸馏

这些知识从哪里来?蒸馏温度T是什么?知识蒸馏的基本框架。离线知识蒸馏方法。

2025-04-21 22:48:21 1084

原创 【自然语言处理与大模型】模型压缩技术之剪枝

什么是模型剪枝?有哪些剪枝方式?量化和剪枝的区别是什么?

2025-04-21 18:58:23 1148

原创 【自然语言处理与大模型】模型压缩技术之量化

什么是量化?为什么要量化?以及如何实现量化?

2025-04-21 17:35:24 895

原创 【自然语言处理与大模型】大模型(LLM)基础知识③

大模型的“7B”是什么意思?模型后面标的“instruct”是什么意思?大模型量化什么意思?量化等级是什么意思?量化方法是什么意思?啥是Alpaca数据集?BLEU评估指标是什么?怎么算的?ROUGE评估指标是什么?怎么算的?什么是QLoRA?为什么要做分布式微调训练?怎么实现大模型的分布式微调的?原理策略?

2025-04-21 02:06:09 637

原创 【自然语言处理与大模型】个人使用LLaMA Factory微调的记录

个人使用LLaMA Factory微调的记录:魔塔社区免费服务器如何使用webui微调?llamafactory工程文件目录里面都有是些什么?webui里面的微调参数的都是什么意思? 如何直接使用webchat来和指定模型对话?五、使用cli train进行黑窗口微调训练的时候如何配置训练参数?

2025-04-21 01:51:26 1149

原创 【自然语言处理与大模型】Linux环境下Ollama下载太慢了该怎么处理?

Linux环境下Ollama下载太慢了该怎么处理?答案是在下载配置文件中更换下载源。

2025-04-20 23:18:57 649

原创 【学习心得】让公司或学校的服务器也能像AutoDL等算力平台一样使用jupyter lab访问

让公司或学校的服务器也能像AutoDL等算力平台一样使用jupyter lab访问,这个过程涉及到几个关键步骤,比如安装 Jupyter、配置安全访问、开放必要的端口以及确保可以通过互联网访问等等。

2024-12-19 02:38:28 503

原创 【自然语言处理与大模型】vLLM部署本地大模型①

本文记录我个人在使用vllm部署私有大模型的时候遇到的困难和详细部署过程。

2024-12-18 23:59:36 1906

“阴阳怪气”语气风格DPO数据集

用两个模型互搏,生成的DPO数据集。 - 一个大模型模仿“直肠子”,"system_prompt": "你是一个说话直来直去、不拐弯抹角的AI助手。你的回答简洁明了,不带情绪修饰,有什么说什么。" - 一个大模型模仿“阴阳家”,"system_prompt": "你是一个擅长阴阳怪气、明褒暗贬的AI助手。你说的话表面客气,实则内涵满满,让人听着像夸奖,细品却不是滋味。讽刺要有分寸,不能涉及性别、外貌、身体特征等敏感内容。" 数据集示例如下: [ { "instruction": "室友半夜和对象视频娇喘,怎么提醒?", "input": "", "chosen": "嗯,这个情况确实有点微妙。我建议你可以采取一种既不尴尬又能传达意图的方式,比如说:“哎呀,我刚刚听到你那边声音挺大的,是不是有什么好听的歌或者电影啊?我这边有点困了,需要安静一会儿。”这样既没有直接指出问题,又暗示了需要安静的环境。", "rejected": "直接而礼貌地提醒:“室友,现在比较晚了,我们可能需要保持安静,不要影响其他人休息。”" }, { "instruction": "亲戚说我不生孩子就是自私,好想掀桌!", "input": "", "chosen": "哎呀,这亲戚真是‘金玉良言’啊,真是让人‘茅塞顿开’呢。不过,掀桌嘛,还是算了吧,毕竟桌面上的东西掀不起多大风浪,倒是可能溅你一身水。保持风度,理性沟通才是王道。", "rejected": "理解你的情绪。面对这种无理指责,保持冷静,不必理会。每个人都有自己的选择和理由。" } ]

2025-05-18

手语识别-深度学习-自建ASL数据集-模型训练(分卷压缩第一卷)

内容概要: 本资源是一套自建美国手语(American Sign Language, ASL)手势数据集,通过OpenCV实现每秒30帧的高清视频录制,精准捕捉并记录了连续且细腻的手部动作变化,旨在用于深度学习算法对手势识别的研究与训练。数据集中所有图片均为720p分辨率(1280x720像素),确保了手部细节特征在图像中的高清晰度展现。为进一步提升模型的学习效果和泛化能力,我还对手语图像采用了尺度归一化,高斯滤波,肤色提取和二值,四种方式来进行数据增强。 适用人群: 此数据集适用于机器学习工程师、人工智能研究人员、计算机视觉领域的学者以及致力于开发智能手语识别系统的开发者和团队。 使用场景及目标: 该数据集适用于训练和测试深度学习模型,目标在于提高手语识别系统的识别精度和实时性能。 其他说明: 为了增强模型泛化能力和应对不同环境下的识别挑战,数据集中的手势样本在多种拍摄角度下采集,并特意设置了简洁单一的背景以减少干扰因素。每个手势类别都提供了丰富的变体,大约包含1000张不同情境下的图像,总计涵盖了约2万张手势数据图片,充分满足大规模训练和验证的需求。

2024-04-01

手语识别-深度学习-自建ASL数据集-模型训练(分卷压缩第二卷)

内容概要: 本资源是一套自建美国手语(American Sign Language, ASL)手势数据集,通过OpenCV实现每秒30帧的高清视频录制,精准捕捉并记录了连续且细腻的手部动作变化,旨在用于深度学习算法对手势识别的研究与训练。数据集中所有图片均为720p分辨率(1280x720像素),确保了手部细节特征在图像中的高清晰度展现。为进一步提升模型的学习效果和泛化能力,我还对手语图像采用了尺度归一化,高斯滤波,肤色提取和二值,四种方式来进行数据增强。 适用人群: 此数据集适用于机器学习工程师、人工智能研究人员、计算机视觉领域的学者以及致力于开发智能手语识别系统的开发者和团队。 使用场景及目标: 该数据集适用于训练和测试深度学习模型,目标在于提高手语识别系统的识别精度和实时性能。 其他说明: 为了增强模型泛化能力和应对不同环境下的识别挑战,数据集中的手势样本在多种拍摄角度下采集,并特意设置了简洁单一的背景以减少干扰因素。每个手势类别都提供了丰富的变体,大约包含1000张不同情境下的图像,总计涵盖了约2万张手势数据图片,充分满足大规模训练和验证的需求。

2024-04-01

手语识别-深度学习-自建ASL数据集-模型训练(分卷压缩第三卷/最后一卷)

内容概要: 本资源是一套自建美国手语(American Sign Language, ASL)手势数据集,通过OpenCV实现每秒30帧的高清视频录制,精准捕捉并记录了连续且细腻的手部动作变化,旨在用于深度学习算法对手势识别的研究与训练。数据集中所有图片均为720p分辨率(1280x720像素),确保了手部细节特征在图像中的高清晰度展现。为进一步提升模型的学习效果和泛化能力,我还对手语图像采用了尺度归一化,高斯滤波,肤色提取和二值,四种方式来进行数据增强。 适用人群: 此数据集适用于机器学习工程师、人工智能研究人员、计算机视觉领域的学者以及致力于开发智能手语识别系统的开发者和团队。 使用场景及目标: 该数据集适用于训练和测试深度学习模型,目标在于提高手语识别系统的识别精度和实时性能。 其他说明: 为了增强模型泛化能力和应对不同环境下的识别挑战,数据集中的手势样本在多种拍摄角度下采集,并特意设置了简洁单一的背景以减少干扰因素。每个手势类别都提供了丰富的变体,大约包含1000张不同情境下的图像,总计涵盖了约2万张手势数据图片,充分满足大规模训练和验证的需求。

2024-04-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除