【自然语言处理与大模型】魔塔社区免费实例中使用ollama快速部署llama3

在ModelScope魔塔社区提供的免费实例,部署开源llama3模型。

一、申请使用魔塔免费实例

注册登录进入魔塔社区后点击左侧的“我的Notebook”即可申请免费的GPU环境免费实例。 

Notebook功能概述 · 文档中心https://modelscope.cn/docs/notebooks/intro 【注】魔塔社区的这个免费实例是没办法访问huggingface外网的。带有一个数据盘/mnt/workspace可以持久化存储100G。以及自带了ModelScope的SDK。

二、安装ollama并部署模型

使用ollama来本地化部署非常便捷,并且开放了API供外部调用llama3模型。

# ollama的下载地址
https://ollama.com/downl
### 使用 Ollama 部署通过 LLama_Factory 微调 DeepSeek 后生成的 `model.safetensors` 文件 #### 准备工作 为了成功部署微调后的模型,首先需要确保环境已经配置完毕。这包括克隆 LLama_Factory 仓库并安装必要的依赖项[^2]。 ```bash git clone https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e ".[torch,metrics]" ``` #### 导入模型到 Ollama Ollama 是一种用于管理和运行大型语言模型的服务工具。要导入 `.safetensors` 格式的模型文件,通常涉及以下几个方面: 1. **确认模型兼容性** 确认微调后的 `model.safetensors` 文件目标硬件架构相匹配,并且适用于所使用的版本框架。 2. **上传模型至 Ollama** 将本地路径下的 `model.safetensors` 文件上传到 Ollama 平台。如果是在云端环境中操作,则可以通过 API 或者 Web 控制面板完成此过程。 3. **加载模型** 利用 Ollama 提供的功能来加载刚刚上传的模型实例。对于 Python 用户来说,可以借助官方 SDK 来简化这一流程。 ```python from ollama import Model # 初始化模型对象 model = Model.load('path/to/model.safetensors') ``` 4. **验证部署状态** 检查模型是否已正确加载以及其性能表现情况。可通过简单的推理测试来进行初步评估。 5. **设置API接口** 如果计划对外提供服务,还需要设定好相应的 RESTful API 接口以便其他应用程序能够访问该模型所提供的功能。 6. **优化参数调整** 对于特定应用场景,可能还需进一步调节超参数以达到最佳效果。 7. **监控维护** 定期监测模型的表现状况,及时处理可能出现的问题,保持系统的稳定性和高效运作。 #### 注意事项 考虑到训练大模型所需的资源消耗较大,建议提前规划好足够的 GPU 算力支持(例如采用 A100 显卡),并且合理估算相关成本支出。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值