【统计学】三大相关系数之皮尔逊相关系数(person correlation coefficient)

统计学中,皮尔逊相关系数衡量了两变量X和Y的线性相关性,取值范围为-1到+1。0表示不相关,正值表示正相关,负值表示负相关,值越大相关性越强。它基于数据的正态分布假设和协方差计算,适用于连续性变量。若数据不符合正态分布,可使用Spearman或Kendall秩相关系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

统计学中的三大相关性系数:pearson, spearman, kendall,他们反应的都是两个变量之间变化趋势的方向以及程度,其值范围为-1到+1。
0表示两个变量不相关,正值表示正相关,负值表示负相关,值越大表示相关性越强。

  1. person correlation coefficient(皮尔森相关性系数)
    皮尔逊相关系数通常用r或ρ表示,度量两变量X和Y之间相互关系(线性相关)
    (1)公式
    皮尔森相关性系数的值等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX, σY)。
    (2)数据要求
    a.正态分布
    它是协方差与标准差的比值,并且在求皮尔森相关性系数以后,通常还会用t检验之类的方法来进行皮尔森相关性系数检验,而t检验是基于数据呈正态分布的假设的。
    b.实验数据之间的差距不能太大
    比如:研究人跑步的速度与心脏跳动的相关性,如果人突发心脏病,心跳为0(或者过快与过慢),那这时候我们会测到一个偏离正常值的心跳,如果我们把这个值也放进去进行相关性分析,它的存在会大大干扰计算的结果的。
    在这里插入图片描述
    计算积距pearson相关系数,连续性变量才可采用;
    计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据;
    计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。
import pandas as pd
import numpy as np
  
#原始数据
X1=pd.Series([1, 2, 3, 4, 5, 6])
Y1=pd.Series([0.3, 0.9, 2.7, 2, 3.5, 5])
  
X1.mean() #平均值# 3.5
Y1.mean() #2.4
X1.var() #方差#3.5
Y1.var() #2.9760000000000004
  
X1.std() #标准差不能为0# 1.8708286933869707
Y1.std() #标准差不能为0#1.725108692227826
X1.cov(Y1) #协方差#3.0600000000000005
  
X1.corr(Y1,method="pearson") #皮尔森相关性系数 #0.948136664010285
X1.cov(Y1)/(X1.std()*Y1.std()) #皮尔森相关性系数 # 0.948136664010285

写于2020年4月15日
base:北京
-----------------------------分享结束线------------------------------

喜欢可以关注【小猪课堂】公众号了解更多编程小技巧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值