标准卷积、深度可分离卷积和分组卷积的参数量与计算量和感受野大小计算

本文详细介绍了标准卷积、深度可分离卷积和分组卷积的参数量及计算量的计算方法,并通过实例展示了不同卷积在特定条件下的差异,揭示了深度学习中减少计算成本的有效策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、特征图尺寸计算方法

W o u t = ( W i n + 2 ∗ P a d d i n g − F ) / S t r i d e + 1 W_{out} = (W_{in} + 2*Padding-F)/Stride+1 Wout=(W

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值