CascadePSP论文解读

本文深入解读"CascadePSP"论文,该模型针对高分辨率图像分割问题,通过全局和局部修正实现精细化分割。模型采用多级Refinement Module(RM)结构,结合ResNet和Pyramid Pooling Module进行特征提取与融合。训练过程分为全局和局部两步,有效提升分割精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

"CascadePSP: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinem"论文解读

介绍

目前图像分割算法主要是在固定分辨率范围内对图像进行训练,对于高分辨率的图像是很不准确的,无法捕获高分辨率图像的边界细节。造成大部分分割算法不适用于高分辨图像的主要原因是:
1、主流的数据集(如PASCAL或COCO数据集)分辨率就不高,如果要建立高分辨率的数据集,工作量很庞大,需要对每个像素进行标注。
2、直接训练高分辨率图像对于GPU的内存要求很高。
因此本文提出了一种通用的分割细化模型,可以将任意给定的分割从低分辨率细化到高分辨率。可以附加到现有的分割算法中,用来生成更加精细化的分割掩码。模型的输入就是某个分割算法得到初始掩码和原图,输出为精细化后的分割掩码。

模型

整个网络结构是由多级Refinement module (RM)结构级联而成的,包含全局和局部两步的修正。

RM结构

Refinement module (RM)结构
网络的输入为原始图片([W,H]),三个不同尺度的分割掩膜图([W,H],[W/4,H/4],[W/8,H/8]),注:这三个尺度掩模图可以都相同,也可以不同。
首先对尺度为[W/4,H/4],[W/8,H/8]的掩膜图进行上采样,成为[W,H]大小。
然后利用ResNet进行特征提取。
再利用PPM(Pyramid Pooling Module)提取

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值