Games101 笔记 Lecture 7-9 Shading (Shading Frequencies 着色频率)

着色频率决定了着色应用的位置,从Flat Shading到Phong Shading,逐步提供更平滑的表面效果。Flat Shading简单但不适用于光滑表面;Gouraud Shading在每个顶点着色并插值;Phong Shading在每个像素着色,考虑更多细节。法线向量的定义,无论是顶点还是像素级别,都影响着着色质量。对于复杂几何体,适当选择着色频率可平衡效果与性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Shading Frequencies 着色频率

着色频率实际是指将着色应用在哪些点上。

Flat Shading

  • Flat Shading: 每一个三角形都是一个平面,把三角形的法线求出来,算出一个shading的结果作为着色的结果。
    • shade each triangle
    • Triangle faces is flat - one normal vector
    • Not good for smooth surfaces

Gouraud Shading

  • Gouraud Shading: 在任意一个顶点上求出法线,每个顶点做一次着色,三角形内部通过插值的方法求出来。
    • shade each vertex
    • Interpolate colors from vertices across triangle
    • Each vertex has a normal vector

Phong Shading

  • Phong Shading: 求出三角形三个顶点的法线,在三角形内部每个像素上都可以插值得到一个独特的法线,就可以对每一个像素进行着色。(与Blinn_Phong Reflectance Model无关)
    • shade each pixel
    • Interpolate normal vectors across each triangle
    • Compute full shading model at each pixel

效果不仅与频率相关,还与几何形体本身的顶点密集程度相关。
当几何足够复杂时,可以用一些稍微简单的着色频率。
着色频率的复杂度也取决于几何形体。
对于一般物体,Phong shading会有比较好的效果。

Defining Per-Vertex Normal Vectors

  • Best to get vertex normals from the underlying geometry
    一个理想化的情况,已知试图表示的几何体结构,可以利用该几何结构计算出某点对应的法线。
  • Otherwise have to infer vertex
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值