pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)

前言

anaconda在个人免费,团队和公司收费,于是果断采用了miniconda。

  • 有兴趣可以添加我,一起探讨技术。
    • 加V:Fengfl1222,名称:聚星汇智
    • 要资料,申请备注为:CSDN+地方+资料,如CSDN山东资料
    • 想接项目一起努力进步,申请备注为:CSDN+地方+项目,如CSDN+山东+项目,添加成功之后,可以发一份简历。
    • 项目组缺人,想要兼职的人,火速加我进群。
    • 本人介绍:211高校(北京交通大学)计算机研究生,本科双非计算机毕业后,校招进入军工,工作2个月离职后进入阿里,工作两年后离职考研,现已毕业,入职济南某大厂。团队主要技术栈:RAG、LLM、JAVA、PYTHON、GO、VUE、REACT等web开发需求。已有开发团队,如果有空闲时间想一个接项目者,可以加我呦。
    • 不按上诉规则添加好友者,不予通过。

一、miniconda和anaconda的关系

Miniconda 和 Anaconda 都是用于管理 Python 环境和包的开源工具,它们由同一个团队(Anaconda, Inc.)开发,然而,它们的用途和设计目标有所不同。(他们俩是一家的

1、Anaconda

Anaconda 是一个功能齐全的数据科学平台,它包括了 Python 解释器、包管理器 conda、以及数百个常用的数据科学和机器学习库。Anaconda 旨在为数据科学家和开发者提供一个开箱即用的环境,适合于数据分析、机器学习、科学计算等各种应用。

特点:

大型安装包:Anaconda 包含了许多预装的库和工具,如 NumPy、Pandas、SciPy、Jupyter Notebook、Matplotlib、Scikit-learn 等等。这使得它的安装文件相对较大(通常超过 1 GB)。
全功能:适合那些希望快速搭建一个数据科学环境,而不需要手动安装和配置各种库和工具的用户。
用户友好:通过 Anaconda Navigator 图形界面,可以轻松管理环境和安装包。

适用场景:

适合新手或希望快速搭建完整数据科学环境的用户。
适合在本地机器上进行大规模数据分析和机器学习任务。

2、Miniconda

Miniconda 是 Anaconda 的一个精简版本,它只包含 conda 包管理器和 Python 解释器,不包括任何预装的第三方库。Miniconda 提供了一个最小化的环境,用户可以根据需要手动安装所需的库和工具。

特点:

小型安装包:由于 Miniconda 只包含基础的包管理器和 Python 解释器,安装文件非常小(通常在 50-60 MB 之间)。
高度灵活:用户可以根据需要手动安装和管理 Python 包和环境,这使得 Miniconda 更加灵活,但也需要更多的手动配置。
轻量级:适合那些希望保持系统轻量且只安装所需工具的用户。

适用场景:

适合高级用户或开发者,他们知道自己需要安装哪些库,并且希望对环境有更多控制。
适合在资源有限的系统(如服务器或 Docker 容器)上运行的项目。

3、总结

Anaconda 是一个功能齐全、开箱即用的解决方案,适合需要快速搭建完整数据科学环境的用户。
Miniconda 则是一个轻量级的、更加灵活的解决方案,适合那些只需要安装和使用特定 Python 库的用户。

二、下载miniconda(清华镜像链接)

  1. 清华大学开源软件镜像站:https://mirrors.tuna.tsinghua.edu.cn/
  2. miniconda 清华镜像下载链接:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/

点击第二个直接下载就行

在这里插入图片描述

三、安装miniconda

1、安装

  1. 将上面下载的安装包放入此目录中
mkdir ~/miniconda
cd ~/miniconda/
  1. 执行安装命令
bash Miniconda3-latest-Linux-x86_
### Miniconda 环境配置教程 #### 1. 下载安装 Miniconda Miniconda个轻量级的 Conda 发行版,适合用于快速设置 Python 和数据科学工具链。可以从官方页面下载适用于操作系统的版本[^3]。 ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh ``` 在安装过程中,按照提示完成安装,并确认是否将 Miniconda 的路径添加到系统环境变量中[^2]。 #### 2. 配置环境变量 如果未自动添加到环境变量,则需手动修改 `~/.bashrc` 或 `~/.zshrc` 文件: ```bash export PATH="/path/to/miniconda/bin:$PATH" source ~/.bashrc ``` 完成后可以通过以下命令验证安装是否成功: ```bash conda --version ``` 若显示版本号则表示安装成功。 #### 3. 创建虚拟环境 通过 Conda 命令可以轻松管理多个独立的 Python 虚拟环境。以下是创建环境的方法: ```bash conda create -n myenv python=3.9 ``` 激活该环境: ```bash conda activate myenv ``` 退出当前环境可执行: ```bash conda deactivate ``` 删除不再使用的环境: ```bash conda remove --name myenv --all ``` #### 4. 更改国内镜像源加速包下载速度 为了提高软件包下载的速度,推荐更改默认的 Conda 镜像源为上海交通大学开源镜像站[^4]。编辑或新建文件 `~/.condarc` 并写入如下内容: ```yaml channels: - defaults default_channels: - https://mirror.sjtu.edu.cn/anaconda/pkgs/main - https://mirror.sjtu.edu.cn/anaconda/pkgs/free custom_channels: conda-forge: https://mirror.sjtu.edu.cn/anaconda/cloud/ pytorch: https://mirror.sjtu.edu.cn/anaconda/cloud/ ``` 保存后更新索引缓存: ```bash conda clean -i ``` #### 5. 安装常用库 进入已激活的环境中,使用以下命令安装所需的依赖项: ```bash conda install numpy pandas matplotlib scikit-learn ``` 对于深度学习框架 PyTorch安装,可以根据硬件支持情况选择 CUDA 版本: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` #### 6. VS Code 整合与调试 安装 Visual Studio Code 后,可通过扩展市场获取 Microsoft 提供的 Python 插件来增强开发体验[^1]。随后,在 `.vscode/settings.json` 中指定解释器位置: ```json { "python.pythonPath": "/path/to/miniconda/envs/myenv/bin/python", } ``` 最后重启 IDE 即可应用新的配置。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

java冯坚持

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值